

# AN4612 Application note

## Migrating from STM32L1 series to STM32L4 series microcontrollers

### Introduction

For designers of STM32 microcontroller applications, it is important to be able to easily replace one microcontroller type by another one in the same product family. Migrating an application to a different microcontroller is often needed, when product requirements grow, putting extra demands on memory size, or increasing the number of I/Os. On the other hand, cost reduction objectives may also be an argument to switch to smaller components and shrink the PCB area.

This application note is written to help analyzing the steps required to migrate an existing design from STM32L1 series to STM32L4 series. It groups together the most important information and lists the vital aspects that need to be addressed.

This document lists the "full set" of features available for the STM32L1 and STM32L4 series (some products may have less features depending on their part number).

In order to migrate an application from STM32L1 series to STM32L4 series, these three aspects need to be considered: the hardware migration, the peripheral migration and the firmware migration.

To fully benefit from the information in this application note, the user should be familiar with the STM32 microcontrollers documentation available on *www.st.com*, with a particular focus on:

STM32L1 series:

- STM32L1xx reference manual (RM0038)
- STM32L1xx datasheets
- STM32L1 Flash and EEPROM programming manual (PM0062).

STM32L4 series:

- STM32L4x6 reference manual (RM0351)
- STM32L4xx datasheets.

#### Table 1. Applicable products

| Туре             | Applicable products             |
|------------------|---------------------------------|
| Microcontrollers | STM32L1 series, STM32L4 series. |

## Contents

| 1 | STM:  | 32L4 series overview                  |
|---|-------|---------------------------------------|
| 2 | Hard  | ware migration                        |
| 3 | Boot  | mode selection                        |
| 4 | Perip | oheral migration                      |
|   | 4.1   | STM32 product cross-compatibility 13  |
|   | 4.2   | Memory mapping                        |
|   | 4.3   | DMA 20                                |
|   | 4.4   | Interrupts                            |
|   | 4.5   | RCC                                   |
|   |       | 4.5.1 Performance versus VCORE ranges |
|   |       | 4.5.2 Peripheral access configuration |
|   |       | 4.5.3 Peripheral clock configuration  |
|   | 4.6   | PWR                                   |
|   | 4.7   | RTC                                   |
|   | 4.8   | SYSCFG and RI                         |
|   | 4.9   | GPIO                                  |
|   | 4.10  | EXTI source selection                 |
|   | 4.11  | FLASH                                 |
|   | 4.12  | U(S)ART                               |
|   | 4.13  | I2C                                   |
|   | 4.14  | SPI                                   |
|   | 4.15  | CRC                                   |
|   | 4.16  | AES                                   |
|   | 4.17  | LCD                                   |
|   | 4.18  | USB                                   |
|   | 4.19  | ADC                                   |
|   | 4.20  | DAC                                   |
|   | 4.21  | COMP                                  |
|   | 4.22  | OPAMP                                 |



| 5 | <b>Revision history</b> |  |
|---|-------------------------|--|
|---|-------------------------|--|



## List of tables

| Table 1.  | Applicable products                                                    |
|-----------|------------------------------------------------------------------------|
| Table 2.  | STM32L1 series and STM32L4 series pinout differences (QFP)7            |
| Table 3.  | STM32L1 series and STM32L4 series pinout differences (BGA)7            |
| Table 4.  | Boot modes                                                             |
| Table 5.  | Bootloader interfaces                                                  |
| Table 6.  | Peripheral compatibility analysis STM32L1 series versus STM32L4 series |
| Table 7.  | Peripheral address mapping differences between STM32L1 series          |
|           | and STM32L4 series                                                     |
| Table 8.  | DMA request differences migrating STM32L1 series to STM32L4 series     |
| Table 9.  | Interrupt vector differences between STM32L1 series                    |
|           | and STM32L4 series                                                     |
| Table 10. | RCC differences between STM32L1 and STM32L4 series                     |
| Table 11. | Performance versus VCORE ranges                                        |
| Table 12. | RCC registers used for peripheral access configuration                 |
| Table 13. | PWR differences between STM32L1 series and STM32L4 series              |
| Table 14. | RTC differences between STM32L1 series and STM32L4 series              |
| Table 15. | SYSCFG differences between STM32L1 series and STM32L4 series           |
| Table 16. | EXTI differences between STM32L1 series and STM32L4 series             |
| Table 17. | FLASH differences between STM32L1 series and STM32L4 series            |
| Table 18. | U(S)ART differences between STM32L1 series and STM32L4 series          |
| Table 19. | I2C differences between STM32L1 series and STM32L4 series              |
| Table 20. | SPI differences between STM32L1 series and STM32L4 series              |
| Table 21. | Migrating from I2S to SAI                                              |
| Table 22. | CRC differences between STM32L1 series and STM32L4 series              |
| Table 23. | AES differences between STM32L1 series and STM32L4 series              |
| Table 24. | USB differences between STM32L1 series and STM32L4 series              |
| Table 25. | ADC differences between STM32L1 series and STM32L4 series              |
| Table 26. | DAC differences between STM32L1 series and STM32L4 series              |
| Table 27. | COMP differences between STM32L1 series and STM32L4 series             |
| Table 28. | OPAMP differences between STM32L1 series and STM32L4 series            |
| Table 29. | Document revision history                                              |



# List of figures

| Figure 1. | LQFP144 compatible board design                                  | 8 |
|-----------|------------------------------------------------------------------|---|
| Figure 2. | LQFP100 compatible board design                                  | 9 |
| Figure 3. | LQFP64 compatible board design                                   | 9 |
| Figure 4. | BGA132 compatible board design 1                                 | 0 |
| Figure 5. | Generation of clock for SAI master mode (in case MCLK is needed) | 4 |



### 1 STM32L4 series overview

The STM32L4 series forms a perfect fit in terms of ultra-low-power, performances, memory size, and peripherals at a cost effective price.

In particular, the STM32L4 series allows higher frequency/performance operation than STM32L1 series, including a Cortex<sup>®</sup>-M4 @80 MHz versus Cortex<sup>®</sup>-M3 @32 MHz and optimized Flash memory access through the adaptive real-time memory accelerator (ART Accelerator<sup>™</sup>).

The STM32L4 series includes a larger set of peripherals with advanced features and optimized power consumption compared to the STM32L1.

STM32L4 increases low-power efficiency in dynamic mode ( $\mu$ A/MHz) still reaching very low level of static power consumption on various available low-power modes.

The detailed list of available features and packages for each product can be found in the respective datasheet.



### 2 Hardware migration

The ultra-low-power STM32L4 and STM32L1 series present a high level of pin compatibility. Most peripherals share the same pins in the two series.

The transition from the STM32L1 series to the STM32L4 series for QFP and BGA packages is easy since only a few pins are different (refer to *Table 2* and *Table 3*).

For the WLCSP packages the transition is less easy because the pinout is different. This is due to the fact that devices of STM32L1 series and STM32L4 series have different die sizes.

| STM32L1 series |        |        |        | ST    | M32L4 seri | ies    |                       |
|----------------|--------|--------|--------|-------|------------|--------|-----------------------|
| QFP64          | QFP100 | QFP144 | Pinout | QFP64 | QFP100     | QFP144 | Pinout                |
| 1              | 6      | 6      | VLCD   | 1     | 6          | 6      | VBAT                  |
| -              | -      | 95     | VDD    | -     | -          | 95     | VDDIO2 <sup>(1)</sup> |
| -              | -      | 131    | VDD    | -     | -          | 131    | VDDIO2 <sup>(1)</sup> |
| -              | 73     | 106    | PH2    | -     | 73         | 106    | VDDUSB                |
| 48             | -      | -      | VDD    | 48    | -          | -      | VDDUSB                |

 Table 2. STM32L1 series and STM32L4 series pinout differences (QFP)

1. VDDIO2 pin can be connected externally to V<sub>DD</sub>.

#### Table 3. STM32L1 series and STM32L4 series pinout differences (BGA)

| STM32L1 series |               | STM32L4 series |                       |  |
|----------------|---------------|----------------|-----------------------|--|
| BGA132         | BGA132 Pinout |                | Pinout                |  |
| E2             | VLCD          | E2             | VBAT                  |  |
| G7             | VDD           | G7             | VDDIO2 <sup>(1)</sup> |  |
| C11            | PH2           | C11            | VDDUSB                |  |
| G3             | PF6           | G3             | PG11                  |  |
| G4             | PF7           | G4             | PG6                   |  |
| H4             | PF8           | H4             | PG7                   |  |
| J6             | PF9           | J6             | PG8                   |  |
| K1             | NC            | K1             | PG15                  |  |

1. VDDIO2 pin can be connected externally to  $V_{DD}$ .



# Recommendations to migrate from STM32L1 series board to a STM32L4 series board

VLCD pin in STM32L4 series is now multiplexed on PC3 GPIO (pin 29 on QFP144, pin 18 on QFP100, pin 11 on QFP64, pin K2 on BGA132) through alternate function programming in STM32L4 series.

This implies that other functions in STM32L4 series PC3 pins cannot be used on PC3 when LCD is used by the application.

This also implies that the STM32L1 series PC3 related alternate functions, if used by the application, should be mapped onto other STM32L4 series pins.

 $V_{BAT}$  or  $V_{DD}$  supply (if no specific  $V_{BAT}$  power is used), should now be connected to:

- pin 6 (QFP144 and QFP100)
- pin 1 (QFP64)
- pin E2 (BGA132).

V<sub>DDUSB</sub> supply should now be connected to GPIO PH2:

- pin 106 (QFP144)
- pin 73 (QFP100)
- pin C11 (BGA132)

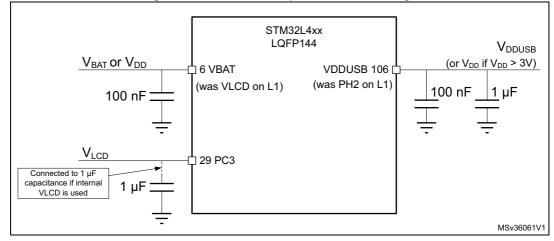
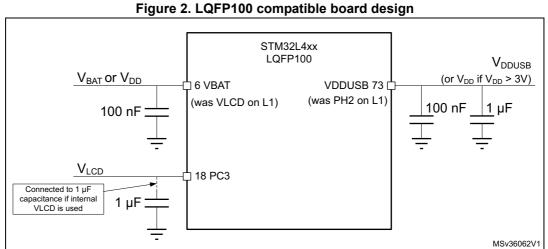
GPIO PH2 cannot be used as regular GPIO anymore (no PH2 GPIO in STM32L4 series).

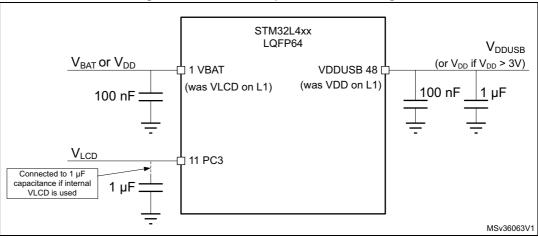
On BGA132, several GPIOs from STM32L1 series are mapped on different GPIOs in STM32L4 series:

- PF6 (pin G3) mapped to PG11 on same pin
- PF7 (pin G4) mapped to PG6 on same pin
- PF8 (pin H4) mapped to PG7 on same pin
- PF9 (pin J6) mapped to PG8 on same pin

Also not connected (NC) pin K1 in STM32L1 series can now be used as GPIO PG15 in STM32L4 series.

The figures below show examples of board designs migrating from STM32L1 series to STM32L4 series.



Figure 1. LQFP144 compatible board design

DocID027094 Rev 2









#### Figure 3. LQFP64 compatible board design






Figure 4. BGA132 compatible board design



### **3** Boot mode selection

The way to select the boot mode differs between the STM32L1 and the STM32L4 series. On the STM32L1 series the boot mode is selected with two pins. In STM32L4 series the boot mode is selected with one pin and the nBOOT1 option bit located in the user option bytes at memory address 0x1FFF7800. For both STM32L1 and STM32L4 series, the boot mode can be selected among these three options: boot from main Flash memory, boot from SRAM or boot from system memory.

*Table 4* summarizes the different configurations available for selecting the boot mode.

| L4/L1 boot m         | t mode selection Boot mode |                   | Aliasing                                    |  |  |  |
|----------------------|----------------------------|-------------------|---------------------------------------------|--|--|--|
| BOOT1 <sup>(1)</sup> | BOOT0                      | Boot mode         | AllaSilig                                   |  |  |  |
| x                    | 0                          | Main Flash memory | Main Flash memory is selected as boot space |  |  |  |
| 0                    | 1                          | System memory     | System memory is selected as boot space     |  |  |  |
| 1                    | 1                          | Embedded SRAM     | Embedded SRAM is selected as boot space     |  |  |  |

| Table | 4. | Boot | modes | 5 |
|-------|----|------|-------|---|
| 10010 | _  | 2000 | moaoc | , |

1. The BOOT1 value is the opposite of the nBOOT1 option bit.

#### Embedded bootloader

The embedded bootloader is located in the system memory, programmed by ST during production. It is used to reprogram the Flash memory using one of the following serial interfaces:

| Table 5 | Bootloader | interfaces |
|---------|------------|------------|
|---------|------------|------------|

| Peripheral | Pin                                  | STM32L1 | STM32L4 |
|------------|--------------------------------------|---------|---------|
| DFU        | USB_DM (PA11)<br>USB_DP (PA12)       | х       | х       |
| USART1     | USART1_TX (PA9)<br>USART1_RX (PA10)  | х       | х       |
| USART2     | USART2_TX (PD5)<br>USART2_RX (PD6)   | х       | -       |
| USART2     | USART2_TX (PA2)<br>USART2_RX (PA3)   | -       | х       |
| USART3     | USART3_TX (PC10)<br>USART3_RX (PC11) | -       | х       |
| I2C1       | I2C1_SCL (PB6)<br>I2C1_SDA (PB7)     | -       | Х       |
| I2C2       | I2C2_SCL (PB10)<br>I2C2_SDA (PB11)   | -       | х       |



| Peripheral                       | Pin                                                                        | STM32L1 | STM32L4 |
|----------------------------------|----------------------------------------------------------------------------|---------|---------|
| I2C3_SCL (PC0)<br>I2C3_SDA (PC1) |                                                                            | -       | х       |
| SPI1                             | SPI1_NSS (PA4)<br>SPI1_SCK (PA5)<br>SPI1_MISO (PA6)<br>SPI1_MOSI (PA7)     | -       | Х       |
| SPI2                             | SPI2_NSS (PB12)<br>SPI2_SCK (PB13)<br>SPI2_MISO (PB14)<br>SPI2_MOSI (PB15) | -       | Х       |
| SPI3                             | SPI3_NSS (PA15)<br>SPI3_SCK (PC10)<br>SPI3_MISO (PC11)<br>SPI3_MOSI (PC12) | -       | Х       |

Please refer to AN2606 for more details on the bootloader.





### 4 Peripheral migration

### 4.1 STM32 product cross-compatibility

The STM32 series embeds a set of peripherals which can be classified in three categories:

- The first category is for the peripherals that are common to all products. Those peripherals are identical on all products, so they have the same structure, registers and control bits. There is no need to perform any firmware change to keep the same functionality at the application level after migration. All the features and behavior remain the same.
- The second category is for the peripherals that present minor differences from one product to another (usually differences due to the support of new features). Migrating from one product to another is very easy and does not require any significant new development effort.
- The third category is for peripherals which have been considerably modified from one product to another (new architecture, new features...). For this category of peripherals, migration will require new development at application level.

*Table 6* gives a general overview of this classification.

The "software compatibility" mentioned in the table below only refers to the register description for "low level" drivers.

The STMCube<sup>™</sup> hardware abstraction layer (HAL) between STM32L1 and STM32L4 series is compatible.

| Peripheral | Nb<br>inst.                 | Nb<br>inst. | (migr                 | Compa<br>ating from STM32L1 | atibility<br>series to STM32L4 series)                                                                                                                                          |  |  |
|------------|-----------------------------|-------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | in L1 in L4 Software Pinout |             | Pinout                | Comments                    |                                                                                                                                                                                 |  |  |
| SPI<br>I2S | 3<br>0                      | 3<br>2      | Partial compatibility | Partial compatibility       | I2S is no more supported by SPI but<br>replaced by dedicated Serial Audio<br>Interface (SAI) in STM32L4 series.<br>Some alternate function not mapped on<br>same GPIO for SPI1. |  |  |
| WWDG       | 1                           | 1           | Full Compatibility    | NA                          | -                                                                                                                                                                               |  |  |
| IWDG       | 1                           | 1           | Full Compatibility    | NA                          | -                                                                                                                                                                               |  |  |
| DBGMCU     | 1                           | 1           | Full Compatibility    | NA                          | -                                                                                                                                                                               |  |  |
| CRC        | 1                           | 1           | Partial compatibility | NA                          | Additional features in STM32L4 series.                                                                                                                                          |  |  |
| ΕΧΤΙ       | 1                           | 1           | Partial compatibility | Full compatibility          | Only PH2 GPIO not available as EXTI input in STM32L4 series.                                                                                                                    |  |  |
| USB        | 1                           | 1           | No compatibility      | Full compatibility          | New peripheral<br>(USB FS in STM32L1 series, USB OTG<br>FS in STM32L4 series).                                                                                                  |  |  |
| DMA        | 1                           | 2           | Full Compatibility    | NA                          | Same features.<br>DMA mapping request may differ (see<br>Section 4.3: DMA).                                                                                                     |  |  |

#### Table 6. Peripheral compatibility analysis STM32L1 series versus STM32L4 series



| Peripheral                                          | Nb<br>inst.         | Nb<br>inst.            | (migra                | Compa<br>ating from STM32L1 | tibility<br>series to STM32L4 series)                                                                                                                                                                             |
|-----------------------------------------------------|---------------------|------------------------|-----------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | in L1               | in L4                  | Software              | Pinout                      | Comments                                                                                                                                                                                                          |
| TIM<br>Basic<br>General P.<br>Advanced<br>Low-power | 9<br>2<br>7<br>-    | 13<br>2<br>7<br>2<br>2 | Full Compatibility    | Partial compatibility       | Some pins not mapped on same GPIO.<br>Timer instance name may differ.<br>Internal connections may differ.                                                                                                         |
| SDIO                                                | 1                   | 1                      | Full Compatibility    | Partial compatibility       | Some pins not mapped on same GPIO.                                                                                                                                                                                |
| FSMC/<br>FMC                                        | 1                   | 1                      | Full Compatibility    | Full Compatibility          | Only SRAM/NOR supported in STM32L1<br>series.<br>NAND supported in STM32L4 series.                                                                                                                                |
| PWR                                                 | 1                   | 1                      | Partial compatibility | NA                          | -                                                                                                                                                                                                                 |
| RCC                                                 | 1                   | 1                      | Partial compatibility | NA                          | -                                                                                                                                                                                                                 |
| USART                                               | 3                   | 3                      | Partial compatibility | Full Compatibility          | Additional features in STM32L4 series.                                                                                                                                                                            |
| UART                                                | 2                   | 2<br>1 (LP)            | Partial compatibility | Full Compatibility          | Additional features in STM32L4 series.<br>Additional LPUART in STM32L4 series.                                                                                                                                    |
| 12C                                                 | 2                   | 3                      | No compatibility      | Full Compatibility          | Additional features in STM32L4 series.                                                                                                                                                                            |
| DAC                                                 | 2                   | 2                      | Partial compatibility | Full Compatibility          | Additional features in STM32L4 series.<br>SW compatible except for output buffer<br>management.                                                                                                                   |
| ADC                                                 | 1                   | 3                      | No compatibility      | Partial compatibility       | Additional features in STM32L4 series.<br>Some pins mapped on different GPIOs.                                                                                                                                    |
| RTC                                                 | 1                   | 1                      | Partial compatibility | Full Compatibility          | Additional features in STM32L4 series.<br>Can be powered by VBAT in STM32L4<br>series.                                                                                                                            |
| FLASH                                               | 1                   | 1                      | No compatibility      | NA                          | New peripheral.                                                                                                                                                                                                   |
| GPIO                                                | Up to<br>115<br>IOs | Up to<br>114<br>IOs    | Full compatibility    | Partial compatibility       | at Reset, STM32L1 series configured in<br>input floating mode, STM32L4 series in<br>analog mode.<br>A few changes mentioned in <i>Section 2:</i><br><i>Hardware migration</i> .<br>No PH2 GPIO in STM32L4 series. |
| LCD glass                                           | 1                   | 1                      | Full compatibility    | Partial compatibility       | VLCD muxed on PC3 GPIO.<br>SEG21 not mapped on same GPIO.<br>Additional features in STM32L4 series.                                                                                                               |
| СОМР                                                | 2                   | 2                      | No compatibility      | Partial compatibility       | Some pins mapped on different GPIOs.                                                                                                                                                                              |
| SYSCFG                                              | 1                   | 1                      | Partial compatibility | NA                          | -                                                                                                                                                                                                                 |
| AES                                                 | 1                   | 1                      | Full compatibility    | NA                          | Additional features in STM32L4 series.                                                                                                                                                                            |

### Table 6. Peripheral compatibility analysis STM32L1 series versus STM32L4 series (continued)



| Peripheral                                                   | Nb<br>inst.                                          | Nb<br>inst. | (migr            | •                     | Compatibility<br>ing from STM32L1 series to STM32L4 series)             |  |  |  |
|--------------------------------------------------------------|------------------------------------------------------|-------------|------------------|-----------------------|-------------------------------------------------------------------------|--|--|--|
|                                                              | in L1 in L4 Software Pinout                          |             | Comments         |                       |                                                                         |  |  |  |
| OPAMP                                                        | 3                                                    | 2           | No compatibility | Partial compatibility | Some pins not mapped on same GPIO.<br>One less OPAMP in STM32L4 series. |  |  |  |
| Color key:                                                   | Color key:                                           |             |                  |                       |                                                                         |  |  |  |
| = No co                                                      | = No compatibility (new feature or new architecture) |             |                  |                       |                                                                         |  |  |  |
| = Partia                                                     | = Partial compatibility (minor changes)              |             |                  |                       |                                                                         |  |  |  |
| = Full Compatibility (from STM32L1 series to STM32L4 series) |                                                      |             |                  |                       |                                                                         |  |  |  |
| = not ap                                                     | = not applicable                                     |             |                  |                       |                                                                         |  |  |  |

### Table 6. Peripheral compatibility analysis STM32L1 series versus STM32L4 series (continued)



### 4.2 Memory mapping

The peripheral address mapping has been changed in the STM32L4 series versus the STM32L1 series.

The table below provides the peripheral address mapping correspondence between STM32L1 and STM32L4 series.

| Peripheral                         |      | STM32L1 series STM3 |      | STM32L4 series |  |  |
|------------------------------------|------|---------------------|------|----------------|--|--|
|                                    | Bus  | Base address        | Bus  | Base address   |  |  |
| FSMC (FMC in STM32L4 series)       |      | 0xA0000000          | AHB3 | 0xA000000      |  |  |
| AES                                |      | 0x50060000          | AHB2 | 0x50060000     |  |  |
| DMA2                               |      | 0x40026400          |      | 0x40020400     |  |  |
| DMA1                               |      | 0x40026000          |      | 0x40020000     |  |  |
| Flash memory Interface             |      | 0x40023C00          | AHB1 | 0x40022000     |  |  |
| RCC                                |      | 0x40023800          |      | 0x40021000     |  |  |
| CRC                                |      | 0x40023000          |      | 0x40023000     |  |  |
| GPIOG                              | AHB  | 0x40021C00          |      | 0x48001800     |  |  |
| GPIOF                              |      | 0x40021800          |      | 0x48001400     |  |  |
| GPIOH                              |      | 0x40021400          | AHB2 | 0x48001C00     |  |  |
| GPIOE                              |      | 0x40021000          |      | 0x48001000     |  |  |
| GPIOD                              |      | 0x40020C00          |      | 0x48000C00     |  |  |
| GPIOC                              | -    | 0x40020800          |      | 0x48000800     |  |  |
| GPIOB                              | -    | 0x40020400          |      | 0x48000400     |  |  |
| GPIOA                              |      | 0x40020000          |      | 0x48000000     |  |  |
| USART1                             |      | 0x40013800          |      | 0x40013800     |  |  |
| SP1                                |      | 0x40013000          | APB2 | 0x40013000     |  |  |
| SDIO (SDMMC in<br>STM32L4 series)  |      | 0x40012C00          |      | 0x40012800     |  |  |
| ADC1 (ADC123 in<br>STM32L4 series) | APB2 | 0x40012400          | AHB2 | 0x50040000     |  |  |
| TIM11                              |      | 0x40011000          |      |                |  |  |
| TIM10                              |      | 0x40010C00          | NA   |                |  |  |
| TIM9                               |      | 0x40010800          |      |                |  |  |
| EXTI                               |      | 0x40010400          | APB2 | 0x40010400     |  |  |
| SYSCFG                             |      | 0x40010000          |      | 0x40010000     |  |  |

| Table 7. Peripheral address mapping differences between STM32L1 series |
|------------------------------------------------------------------------|
| and STM32L4 series                                                     |



| Parinharal                          | 1    | STM32L1 series |        | STM32L4 series |
|-------------------------------------|------|----------------|--------|----------------|
| Peripheral                          | Bus  | Base address   | Bus    | Base address   |
| COMP                                |      | 0x40007C00     | APB2   | 0x40010200     |
| RI                                  |      | 0x40007C04     |        | NA             |
| OPAMP                               |      | 0x40007C5C     | APB1   | 0x40007800     |
| DAC                                 |      | 0x40007400     | - APB1 | 0x40007400     |
| PWR                                 |      | 0x40007000     | APDI   | 0x40007000     |
| USB device FS SRAM                  |      | 0x40006000     |        |                |
| USB device FS                       |      | 0x40005C00     | -      | NA             |
| I2C2                                |      | 0x40005800     |        | 0x40005800     |
| I2C1                                |      | 0x40005400     |        | 0x40005400     |
| USART5 (UART5 in<br>STM32L4 series) |      | 0x40005000     |        | 0x40005000     |
| USART4 (UART4 in<br>STM32L4 series) |      | 0x40004C00     |        | 0x40004C00     |
| USART3                              |      | 0x40004800     |        | 0x40004800     |
| USART2                              | APB1 | 0x40004400     |        | 0x40004400     |
| SPI3                                |      | 0x40003C00     |        | 0x40003C00     |
| SPI2                                |      | 0x40003800     |        | 0x40003800     |
| IWDG                                |      | 0x40003000     | APB1   | 0x40003000     |
| WWDG                                |      | 0x40002C00     |        | 0x40002C00     |
| RTC<br>(inc. BKP registers)         |      | 0x40002800     |        | 0x40002800     |
| LCD                                 |      | 0x40002400     |        | 0x40002400     |
| TIM7                                | 1    | 0x40001400     | 1      | 0x40001400     |
| TIM6                                |      | 0x40001000     | ] [    | 0x40001000     |
| TIM5                                |      | 0x40000C00     | 1      | 0x40000C00     |
| TIM4                                |      | 0x40000800     | ] [    | 0x40000800     |
| TIM3                                |      | 0x40000400     | ] [    | 0x40000400     |
| TIM2                                |      | 0x40000000     | ]      | 0x40000000     |

| Table 7. Peripheral address mapping differences between STM32L1 series |
|------------------------------------------------------------------------|
| and STM32L4 series (continued)                                         |



| Devinteral                                                 | 5         | STM32L1 series          | S             | TM32L4 series |
|------------------------------------------------------------|-----------|-------------------------|---------------|---------------|
| Peripheral                                                 | Bus       | Base address            | Bus           | Base address  |
| Peripherals availa                                         | ble in ST | M32L4 series and not av | vailable in S | TM32L1 series |
| RNG                                                        |           |                         | AHB2          | 0x50060800    |
| USB OTG FS                                                 |           |                         | AIIDZ         | 0x50000000    |
| TSC                                                        |           |                         | AHB1          | 0x40024000    |
| DFSDM                                                      |           |                         |               | 0x40016000    |
| SAI2                                                       |           |                         |               | 0x40015800    |
| SAI1                                                       |           |                         |               | 0x40015400    |
| TIM17                                                      |           |                         |               | 0x40014800    |
| TIM16                                                      |           |                         | APB2          | 0x40014400    |
| TIM15                                                      |           |                         | AFDZ          | 0x40014000    |
| TIM8                                                       |           | NA                      |               | 0x40013400    |
| TIM1                                                       |           | NA                      |               | 0x40012C00    |
| FIREWALL                                                   |           |                         |               | 0x40011C00    |
| VREF                                                       |           |                         |               | 0x40010030    |
| LPTIM2                                                     |           |                         |               | 0x40009400    |
| SWPMI1                                                     |           |                         |               | 0x40008800    |
| LPUART1                                                    |           |                         | APB1          | 0x40008000    |
| LPTIM1                                                     |           |                         |               | 0x40007C00    |
| CAN1                                                       |           |                         |               | 0x40006400    |
| I2C3                                                       |           |                         |               | 0x40005C00    |
| QUADSPI                                                    |           |                         | AHB3          | 0xA0001000    |
| Color key:<br>= base address or bus ch<br>= not applicable | nange     |                         |               |               |

#### Table 7. Peripheral address mapping differences between STM32L1 series and STM32L4 series (continued)

The system memory mapping has been updated between STM32L1 and STM32L4 series, please refer to reference manual or datasheet for more details.



The STM32L4 series features an additional SRAM (SRAM2) of 32 Kbyte. The SRAM2 includes additional features listed below:

- Maximum performance through ICode bus access without physical remap
- Parity check option (32-bit + 4-bit parity check)
- Write protection with 1 Kbyte granularity
- Read Protection (RDP)
- Erase by system reset (option byte) or by software
- Content is preserved in Low-power run, Low-power sleep, Stop 0, Stop 1, Stop 2 mode
- Content can be preserved (RRS bit set in PWR\_CR3 register) in Standby mode (not the case for SRAM1).



### 4.3 DMA

STM32L1 and STM32L4 series use the same DMA controller fully compatible.

STM32L1 and STM32L4 series embed two DMA controllers, up to 7+5 channels for STM32L1 series and 7+7 channels for STM32L4 series. Each channel is dedicated to managing memory access requests from one or more peripherals. It has an arbiter for handling the priority between DMA requests.

The table below presents the correspondence between the DMA requests of the peripherals in STM32L1 series and STM32L4 series.

| Peripheral | DMA request                                  | STM32L1 series                                                           | STM32L4 series                                                               |
|------------|----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| ADC1       | ADC1                                         | DMA1_Channel1                                                            | DMA1_Channel1<br>DMA2_Channel3                                               |
| DAC        | DAC_Channel1<br>DAC_Channel2<br>DAC1<br>DAC2 | DMA1_Channel2 <sup>(1)</sup><br>DMA1_Channel3 <sup>(1)</sup><br>NA<br>NA | NA<br>NA<br>DMA1_Channel3<br>DMA2_Channel4<br>DMA1_Channel4<br>DMA2_Channel5 |
| SPI1       | SPI1_Rx<br>SPI1_Tx                           | DMA1_Channel2<br>DMA1_Channel3                                           | DMA1_Channel2<br>DMA2_Channel3<br>DMA1_Channel3<br>DMA2_Channel4             |
| SPI2       | SPI2_Rx<br>SPI2_Tx                           | DMA1_Channel4<br>DMA1_Channel5                                           | DMA1_Channel4<br>DMA1_Channel5                                               |
| SPI3       | SPI3_Rx<br>SPI3_Tx                           | DMA2_Channel1<br>DMA2_Channel2                                           | DMA2_Channel1<br>DMA2_Channel2                                               |
| USART1     | USART1_Rx<br>USART1_Tx                       | DMA1_Channel5<br>DMA1_Channel4                                           | DMA1_Channel5<br>DMA2_Channel7<br>DMA1_Channel4<br>DMA2_Channel6             |
| USART2     | USART2_Rx<br>USART2_Tx                       | DMA1_Channel6<br>DMA1_Channel7                                           | DMA1_Channel6<br>DMA1_Channel7                                               |
| USART3     | USART3_Rx<br>USART3_Tx                       | DMA1_Channel3<br>DMA1_Channel2                                           | DMA1_Channel3<br>DMA1_Channel2                                               |
| UART4      | UART4_Rx<br>UART4_Tx                         | DMA2_Channel3<br>DMA2_Channel5                                           | DMA2_Channel5<br>DMA2_Channel3                                               |
| UART5      | UART5_Rx<br>UART5_Tx                         | DMA2_Channel2<br>DMA2_Channel1                                           | DMA2_Channel2<br>DMA2_Channel1                                               |
| 12C1       | I2C1_Rx                                      | DMA1_Channel7                                                            | DMA1_Channel7<br>DMA2_Channel6<br>DMA1 Channel6                              |
|            | I2C1_Tx                                      | DMA1_Channel6                                                            | DMA2_Channel7                                                                |

Table 8. DMA request differences migrating STM32L1 series to STM32L4 series



| Peripheral | DMA request | STM32L1 series      | STM32L4 series |
|------------|-------------|---------------------|----------------|
| 2C2        | I2C2_Rx     | DMA1_Channel5       | DMA1_Channel5  |
| 202        | I2C2_Tx     | DMA1_Channel4       | DMA1_Channel4  |
| SDIO       | SDIO        | DMA2 Channeld       | NA             |
| SDMMC      | SDMMC       | DMA2_Channel4<br>NA | DMA2_Channel4  |
| SDIVIIVIC  | SDIVINIC    | NA                  | DMA2_Channel5  |
|            | TIM2_UP     | DMA1_Channel2       | DMA1_Channel2  |
|            | TIM2_CH1    | DMA1_Channel5       | DMA1_Channel5  |
| ГІМ2       | TIM2_CH2    | DMA1_Channel7       | DMA1_Channel7  |
|            | TIM2_CH3    | DMA1_Channel1       | DMA1_Channel1  |
|            | TIM2_CH4    | DMA1_Channel7       | DMA1_Channel7  |
|            | TIM3_UP     | DMA1_Channel3       | DMA1_Channel3  |
|            | ТІМ3_СН1    | <br>DMA1_Channel6   | DMA1_Channel6  |
| ГІМЗ       | TIM3_TRIG   | DMA1_Channel6       | DMA1_Channel6  |
|            | TIM3_CH3    | DMA1_Channel2       | DMA1_Channel2  |
|            | TIM3_CH4    | DMA1_Channel3       | DMA1_Channel3  |
|            | TIM4_UP     | DMA1_Channel7       | DMA1_Channel7  |
|            | TIM4_CH1    | DMA1_Channel1       | DMA1_Channel1  |
| FIM4       | TIM4_CH2    | DMA1_Channel4       | DMA1_Channel4  |
|            | TIM4_CH3    | DMA1_Channel5       | DMA1_Channel5  |
|            | TIM5_UP     | DMA2_Channel2       | DMA2_Channel2  |
|            | TIM5_CH1    | DMA2_Channel5       | DMA2_Channel5  |
|            | TIM5_CH2    | DMA2_Channel4       | DMA2_Channel4  |
| ГІМ5       | ТІМ5_СНЗ    | DMA2_Channel2       | DMA2_Channel2  |
|            | TIM5_CH4    | DMA2_Channel1       | DMA2_Channel1  |
|            | TIM5_TRIG   | DMA2_Channel1       | DMA2_Channel1  |
|            | ТІМ5_СОМ    | DMA2_Channel1       | DMA2_Channel1  |
| ГІМА       |             | DMA1 Channel2       | DMA1_Channel3  |
| FIM6       | TIM6_UP     |                     | DMA2_Channel4  |
| F1147      |             | DMA1 Charpel2       | DMA1_Channel4  |
| FIM7       | TIM7_UP     | DMA1_Channel3       | DMA2_Channel5  |
|            |             |                     | DMA2_Channel3  |
|            | AES_OUT     | DMA2_Channel3       | DMA2_Channel2  |
| AES        | AES_IN      |                     | DMA2_Channel5  |
|            |             | DMA2_Channel5       | DMA2 Channel1  |

#### Table 8. DMA request differences migrating STM32L1 series to STM32L4 series

1. For High-density value line devices, the DAC DMA requests are mapped respectively on DMA1 Channel 3 and DMA1 Channel 4.



### 4.4 Interrupts

The table below presents the interrupt vectors in the STM32L4 series versus the STM32L1 series.

| and STM32L4 series |                          |                  |                 |                         |  |  |
|--------------------|--------------------------|------------------|-----------------|-------------------------|--|--|
|                    |                          | STM32L1          |                 |                         |  |  |
| Position           | Cat.1 and<br>Cat.2       | Cat.3            | Cat.4 and Cat.5 | STM32L4 series          |  |  |
| 0                  |                          | WWDG             |                 |                         |  |  |
| 1                  |                          | PVD              |                 | PVD / PVM               |  |  |
| 2                  |                          | TAMPER_ STAM     | P               | TAMPER / CSS            |  |  |
| 3                  |                          | RTC_WKUP         |                 | RTC_WKUP                |  |  |
| 4                  |                          | FLASH            |                 | FLASH                   |  |  |
| 5                  |                          | RCC              |                 | RCC                     |  |  |
| 6                  |                          | EXTI0            |                 | EXTI0                   |  |  |
| 7                  |                          | EXTI1            |                 | EXTI1                   |  |  |
| 8                  |                          | EXTI2            |                 | EXTI2                   |  |  |
| 9                  |                          | EXTI3            |                 | EXTI3                   |  |  |
| 10                 |                          | EXTI4            |                 | EXTI4                   |  |  |
| 11                 |                          | DMA1_Channel1    |                 | DMA1_Channel1           |  |  |
| 12                 |                          | DMA1_Channel2    | 2               | DMA1_Channel2           |  |  |
| 13                 |                          | DMA1_Channel3    |                 |                         |  |  |
| 14                 |                          | DMA1_Channel4    |                 |                         |  |  |
| 15                 |                          | DMA1_Channel5    |                 |                         |  |  |
| 16                 |                          | DMA1_Channel6    |                 |                         |  |  |
| 17                 |                          | DMA1_Channel7    |                 |                         |  |  |
| 18                 |                          | ADC1             |                 | ADC1_2                  |  |  |
| 19                 |                          | USB_HP           |                 | CAN1_TX                 |  |  |
| 20                 |                          | USB_LP           |                 | CAN1_RX0                |  |  |
| 21                 |                          | CAN1_RX1         |                 |                         |  |  |
| 22                 | COMP, TSC <sup>(1)</sup> | COM              | IP/CA           | CAN1_SCE                |  |  |
| 23                 |                          | EXTI9_5          |                 | EXTI9_5                 |  |  |
| 24                 |                          | TIM1_BRK / TIM15 |                 |                         |  |  |
| 25                 |                          | TIM9             |                 | TIM1_UP / TIM16         |  |  |
| 26                 |                          | TIM10            |                 | TIM1_TRG_COM /<br>TIM17 |  |  |
| 27                 |                          | TIM11            |                 | TIM1_CC                 |  |  |

| Table 9. Interrupt vector differences between STM32L1 series |
|--------------------------------------------------------------|
| and STM32L4 series                                           |

DocID027094 Rev 2



|          | STM32L1            |                                |                 |                |  |
|----------|--------------------|--------------------------------|-----------------|----------------|--|
| Position | Cat.1 and<br>Cat.2 | Cat.3                          | Cat.4 and Cat.5 | STM32L4 series |  |
| 28       | TIM2               |                                |                 | TIM2           |  |
| 29       |                    | TIM3                           |                 | TIM3           |  |
| 30       |                    | TIM4                           |                 | TIM4           |  |
| 31       | I2C1_EV            |                                |                 | I2C1_EV        |  |
| 32       |                    | I2C1_ER                        |                 | I2C1_ER        |  |
| 33       |                    | I2C2_EV                        |                 | I2C2_EV        |  |
| 34       |                    | I2C2_ER                        |                 | I2C2_ER        |  |
| 35       |                    | SPI1                           |                 | SPI1           |  |
| 36       |                    | SPI2                           |                 | SPI2           |  |
| 37       |                    | USART1                         |                 | USART1         |  |
| 38       |                    | USART2                         |                 | USART2         |  |
| 39       |                    | USART3                         |                 | USART3         |  |
| 40       |                    | EXTI15_10                      |                 | EXTI15_10      |  |
| 41       | RTC_Alarm          |                                |                 | RTC_Alarm      |  |
| 42       | USB_FS_WKUP        |                                |                 | DFSDM4         |  |
| 43       | TIM6               |                                |                 | TIM8_BRK       |  |
| 44       | TIM7               |                                |                 | TIM8_UP        |  |
| 45       | NA TIM5 SDIO       |                                |                 | TIM8_TRG_COM   |  |
| 46       | NA                 | SPI3                           | TIM5            | TIM8_CC        |  |
| 47       | NA                 | DMA2_Channel1                  | SPI3            | ADC3           |  |
| 48       | NA                 | NA DMA2_Channel2               |                 | FMC            |  |
| 49       | NA                 | DMA2_Channel3                  | UART5           | SDMMC          |  |
| 50       | NA                 | NA DMA2_Channel4 DMA2_Channel  |                 |                |  |
| 51       | NA                 | NA DMA2_Channel5 DMA2_Channel2 |                 |                |  |
| 52       | NA                 | AES                            | DMA2_Channel3   | UART4          |  |
| 53       | NA                 | COMP_ACQ                       | DMA2_Channel4   | UART5          |  |
| 54       |                    | NA                             | DMA2_Channel5   | TIM6_DACUNDER  |  |
| 55       |                    | NA                             | AES             | TIM7           |  |
| 56       |                    | NA                             | COMP_ACQ        | DMA2_Channel1  |  |
| 57       |                    | NA                             |                 | DMA2_Channel2  |  |
| 58       |                    | NA                             |                 | DMA2_Channel3  |  |
| 59       |                    | NA                             |                 | DMA2_Channel4  |  |

 
 Table 9. Interrupt vector differences between STM32L1 series and STM32L4 series (continued)



|                                                     | STM32L1            |                  |                          |                 |  |
|-----------------------------------------------------|--------------------|------------------|--------------------------|-----------------|--|
| Position                                            | Cat.1 and<br>Cat.2 | Cat.3            | Cat.4 and Cat.5          | STM32L4 series  |  |
| 60                                                  |                    | NA               |                          | DMA2_Channel5   |  |
| 61                                                  |                    | NA               |                          | DFSDM1          |  |
| 62                                                  |                    | NA               |                          | DFSDM2          |  |
| 63                                                  |                    | NA               |                          | DFSDM3          |  |
| 64                                                  |                    | NA               |                          | COMP            |  |
| 65                                                  |                    | NA               |                          | LPTIM1          |  |
| 66                                                  |                    | NA               |                          | LPTIM2          |  |
| 67                                                  |                    | NA               |                          | OTG_FS          |  |
| 68                                                  |                    | NA               |                          | DMA2_CH6        |  |
| 69                                                  |                    | NA               |                          | DMA2_CH7        |  |
| 70                                                  |                    | NA               |                          | LPUART1         |  |
| 71                                                  |                    | NA               |                          | QUADSPI         |  |
| 72                                                  | NA                 |                  | I2C3_EV                  |                 |  |
| 73                                                  |                    | NA               |                          | I2C3_ER         |  |
| 74                                                  |                    | NA               |                          | SAI1            |  |
| 75                                                  |                    | NA               |                          | SAI2            |  |
| 76                                                  |                    | NA               |                          | SWPMI1          |  |
| 77                                                  |                    | NA               |                          | TSC             |  |
| 78                                                  |                    | NA               |                          | LCD             |  |
| 79                                                  |                    | NA               |                          | AES             |  |
| 80                                                  |                    | NA               |                          | RNG             |  |
| 81                                                  |                    | NA               |                          | FPU             |  |
| Color key:<br>= Different inter<br>= Interrupt Vect | -                  | nut STM32I 4 sei | ies peripheral still map | ped on the same |  |

| Table 9. Interrupt vector differences between STM32L1 series |
|--------------------------------------------------------------|
| and STM32L4 series (continued)                               |

1. Depending on the product line used.



### 4.5 RCC

The main differences related to the RCC (reset and clock controller), between the STM32L4 series and the STM32L1 series, are presented in the table below.

| RCC                       | STM32L1 series                                                                                                 | STM32L4 series                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSI                       | Multi Speed RC factory and user trimmed<br>(64 kHz, 128 kHz, 256 kHz, 512 kHz,<br>1.02 MHz, 2.05 MHz, 4.1 MHz) | MSI is a low power oscillator with<br>programmable frequency up to 48 MHz.<br>It can replace PPLs as system clock (faster<br>wakeup, lower consumption).<br>It can be used as USB device clock (no need for<br>external high speed crystal oscillator).<br>Multi Speed RC factory and user trimmed<br>(100 kHz, 200 kHz, 400 kHz, 800 kHz, 1 MHz,<br>2 MHz, 4 MHz (default value), 8 MHz, 16 MHz,<br>24 MHz, 32 MHz and 48 MHz)<br>Auto calibration from LSE |
| HSI                       | 16 MHz RC factor                                                                                               | y and user trimmed                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LSI                       | 37 kHz RC                                                                                                      | 32 kHz RC<br>Lower consumption, higher accuracy (refer to<br>product datasheet)                                                                                                                                                                                                                                                                                                                                                                              |
| HSE                       | 1 - 24 MHz                                                                                                     | 4 - 48 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LSE                       | 32.768 kHz                                                                                                     | 32.768 kHz<br>Configurable drive/consumption<br>Available in backup domain (VBAT)                                                                                                                                                                                                                                                                                                                                                                            |
| PLL                       | – Main PLL for system                                                                                          | <ul> <li>Main PLL for system</li> <li>2 PLLs for SAI1/2, ADC, RNG, SDMMC and<br/>OTG FS clock.</li> <li>Each PLL can provide up to 3 independent<br/>outputs.</li> <li>The PLL multiplication/division factors are<br/>different from STM32L1 series.</li> </ul>                                                                                                                                                                                             |
|                           | PLL clock sources: HSI, HSE.                                                                                   | PLL clock sources: MSI, HSI16, HSE.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| System clock source       | MSI, HSI,                                                                                                      | HSE or PLL                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| System clock<br>frequency | Up to 32 MHz<br>2 MHz after reset using MSI                                                                    | Up to 80 MHz<br>4 MHz after reset using MSI                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AHB frequency             | Up to 32 MHz                                                                                                   | Up to 80 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| APB1 frequency            | Up to 32 MHz                                                                                                   | Up to 80 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| APB2 frequency            | Up to 32 MHz                                                                                                   | Up to 80 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 10. RCC differences between STM32L1 and STM32L4 series



| RCC                                                    | STM32L1 series                                                                                                                                                                                                                                                                                                                                                                                                                    | STM32L4 series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTC clock<br>source                                    | LSI, LSE or HSE clock divided by 2, 4, 8 or 16                                                                                                                                                                                                                                                                                                                                                                                    | LSI, LSE or HSE/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MCO clock<br>source                                    | <ul> <li>– <u>MCO pin (PA8)</u>: SYSCLK, HSI,<br/>With configurable prescaler, 1,</li> </ul>                                                                                                                                                                                                                                                                                                                                      | HSE, PLLCLK, MSI, LSE or LSI.<br>2, 4, 8 or 16 for each output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CSS                                                    | <ul><li>– CSS (Clock Security System)</li><li>– CSS on LSE</li></ul>                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Internal<br>oscillator<br>measurement<br>/ calibration | <ul> <li>LSE connected to TIM9 or TIM10 CH1 IC:<br/>can measure HSI or MSI with respect to LSE<br/>clock high precision</li> <li>LSI connected to TIM10 CH1 IC: can<br/>measure LSI with respect to HSI or HSE<br/>clock precision</li> <li>HSE connected to TIM11 CH1 IC: can<br/>measure HSE with respect to LSE/HSI clock</li> <li>MSI connected to TIM11 CH1 IC: can<br/>measure MSI with respect to HSI/HSE clock</li> </ul> | <ul> <li>(mainly replacing TIM9/10/11 in STM32L1<br/>series by TIM15/16/17 in STM32L4 series)</li> <li>LSE connected to TIM15 or TIM16 CH1 IC:<br/>can measure HSI16 or MSI with respect to<br/>LSE clock high precision</li> <li>LSI connected to TIM16 CH1 IC: can<br/>measure LSI with respect to HSI16 or HSE<br/>clock precision</li> <li>HSE/32 connected to TIM17 CH1 IC: can<br/>measure HSE with respect to LSE/HSI16<br/>clock</li> <li>MSI connected to TIM17 CH1 IC: can<br/>measure MSI with respect to HSI16/HSE<br/>clock</li> </ul> |
| Interrupt                                              | <ul> <li>CSS (linked to NMI IRQ)</li> <li>LSECSS</li> <li>LSIRDY, LSERDY, HSIRDY, MSIRDY,<br/>HSERDY, PLLRDY<br/>(linked to RCC global IRQ)</li> </ul>                                                                                                                                                                                                                                                                            | <ul> <li>CSS (linked to NMI IRQ)</li> <li>LSECSS</li> <li>LSIRDY, LSERDY, HSIRDY, MSIRDY,<br/>HSERDY, PLLRDY, <u>PLLSAI1RDY</u> and<br/><u>PLLSAI2RDY</u><br/>(linked to RCC global IRQ)</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | re or new architecture (difference between STM3<br>ure, but specification change or enhancement                                                                                                                                                                                                                                                                                                                                   | 2L1 and STM32L4 series)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Table 10. RCC differences between STM32L1 and STM32L4 series (continued)

= Same feature, but specification change or enhancement

In addition to the differences described in the table above, the following additional adaptation steps may be needed for the migration.

#### Performance versus V<sub>CORE</sub> ranges 4.5.1

The maximum system clock frequency and Flash memory wait state depend on the selected voltage range  $V_{CORE}$  and also on  $V_{DD}$  for STM32L1 series. The following table gives the different clock source frequencies depending on the product voltage range.



| CPU Power   |             | V <sub>CORE</sub><br>range |     | Max frequency<br>(MHz) |      |      | V <sub>DD</sub> range |      |            |
|-------------|-------------|----------------------------|-----|------------------------|------|------|-----------------------|------|------------|
| performance | performance | range                      | (V) | 4 WS                   | 3 WS | 2 WS | 1 WS                  | 0 WS |            |
|             |             |                            | 5   | STM32L                 | .1   |      |                       |      |            |
| High        | Low         | 1                          | 1.8 | -                      | -    | -    | 32                    | 16   | 2.0 - 3.6  |
| Medium      | Medium      | 2                          | 1.5 | -                      | -    | -    | 16                    | 8    | 1.65 - 3.6 |
| Low         | High        | 3                          | 1.2 | -                      | -    | -    | 4                     | 2    | 1.05 - 3.0 |
|             |             |                            | ę   | STM32L                 | 4    |      |                       |      |            |
| High        | Medium      | 1                          | 1.2 | 80                     | 64   | 48   | 32                    | 16   | NA         |
| Medium      | High        | 2                          | 1.0 | 26                     | 26   | 18   | 12                    | 6    | NA         |

#### Table 11. Performance versus V<sub>CORE</sub> ranges

### 4.5.2 Peripheral access configuration

Since the address mapping of some peripherals has been changed in the STM32L4 series versus the STM32L1 series, different registers need to be used to [enable/disable] or [enter/exit] the peripheral [clock] or [from reset mode].

| Bus  | Register<br>L1 series | Register<br>L4 series                                                               | Comments                                                            |
|------|-----------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|      | RCC_AHBRSTR           | RCC_AHB1RSTR (AHB1)<br>RCC_AHB2RSTR (AHB2)<br>RCC_AHB3RSTR (AHB3) <sup>(1)</sup>    | Used to [enter/exit] the AHB peripheral from reset                  |
| AHB  | RCC_AHBENR            | RCC_AHB1ENR (AHB1)<br>RCC_AHB2ENR (AHB2)<br>RCC_AHB3ENR (AHB3) <sup>(1)</sup>       | Used to [enable/disable] the AHB peripheral clock                   |
|      | RCC_AHBLPENR          | RCC_AHB1SMENR (AHB1)<br>RCC_AHB2SMENR (AHB2)<br>RCC_AHB3SMENR (AHB3) <sup>(1)</sup> | Used to [enable/disable] the AHB peripheral clock in sleep mode     |
|      | RCC_APB1RSTR          | RCC_APB1RSTR1<br>RCC_APB1RSTR2 <sup>(1)</sup>                                       | Used to [enter/exit] the APB1 peripheral from reset                 |
| APB1 | RCC_APB1ENR           | RCC_APB1ENR1<br>RCC_APB1ENR2 <sup>(1)</sup>                                         | Used to [enable/disable] the APB1 peripheral clock                  |
|      | RCC_APB1LPENR         | RCC_APB1SMENR1<br>RCC_APB1SMENR2 <sup>(1)</sup>                                     | Used to [enable/disable] the APB1 peripheral<br>clock in sleep mode |
|      | RCC_APB2RSTR          | RCC_APB2RSTR                                                                        | Used to [enter/exit] the APB2 peripheral from reset                 |
| APB2 | RCC_APB2ENR           | RCC_APB2ENR                                                                         | Used to [enable/disable] the APB2 peripheral clock                  |
|      | RCC_APB2LPENR         | RCC_APB2SMENR                                                                       | Used to [enable/disable] the APB2 peripheral<br>clock in sleep mode |

#### Table 12. RCC registers used for peripheral access configuration



1. The register configuring the peripherals is not present in STM32L1 series, so it should not be needed from a migration-only stand point

The configuration to access a given peripheral involves:

- identifying the bus to which the peripheral is connected, refer to *Table 7 on page 16*
- selecting the right register according the needed action, refer to *Table 12* above.

For example, USART1 is connected to APB2 bus. In order to enable the USART1 clock, the RCC\_APB2ENR register needs to be configured as follows:

\_\_HAL\_RCC\_USART1\_CLK\_ENABLE();

with STM32Cube HAL driver RCC API.

In order to disable USART1 clock during Sleep mode (to reduce power consumption) the RCC\_APB2SMENR register needs to be configured as follows:

HAL\_RCC\_USART1\_CLK\_SLEEP\_ENABLE();

with STM32Cube HAL driver RCC API.

#### 4.5.3 Peripheral clock configuration

Some peripherals have a dedicated clock source independent from the system clock, that is used to generate the clock required for their operation:

USB:

In STM32L1 series: the USB 48 MHz clock is derived from the PLL VCO clock which should be at 96 MHz.

In STM32L4 series: the USB 48 MHz clock is derived from one of the three following sources: main PLL VCO (PLLUSB1CLK), PLLSAI1 VCO (PLLUSB2CLK), MSI clock (when the MSI clock is auto-trimmed with the LSE, it can be used by the USB OTG FS device).

• SDIO/SDMMC:

In STM32L1 series: the SDIO clock (SDIOCLK) is derived from the PLL VCO clock and is equal to PLLVCO/2.

In STM32L4 series: the SDMMC clock is derived from one of the three following sources: main PLL VCO (PLLUSB1CLK), PLLSAI1 VCO (PLLUSB2CLK), MSI clock.

- RTC and LCD:
  - The RTC and the LCD Glass clock share the same clock source (RTCCLK).

In STM32L1 series: the RTC and LCD Glass clock is derived from one of the three following sources: LSE, LSI, HSE divided by prescaler (/2, 4, 8, 16).

In STM32L4 series: The RTC and LCD Glass clock is derived from one of the three following sources: LSE, LSI, HSE divided by 32.

• ADC:

In STM32L1 series, the ADC features two clock schemes:

Clock for the analog circuitry: ADCCLK. This clock is always the HSI oscillator clock. A divider by 1, 2 or 4 allows to adapt the clock frequency to the device operating conditions. This configuration is done using ADC\_CCR[ADCPRE] bits. The ADC clock depends also on the voltage range V<sub>CORE</sub>. When product voltage range 3 is selected (V<sub>CORE</sub> = 1.2 V), the ADC is low speed (ADCCLK = 4 MHz, 250 Ksps).



 Clock for the digital interface (used for register read/write access). This clock is the APB2 clock. The digital interface clock can be enabled/disabled through the RCC\_APB2ENR register (ADC1EN bit) and there is a bit to reset the ADC through RCC\_APB2RSTR[ADCRST] bit.

In STM32L4 series, the input clock of the two ADCs (master and slave) can be selected between two different clock sources:

- The ADCs clock can be derived (selected by software) from one of the three following sources: system clock (SYSCLK), PLLSAI1 VCO (PLLADC1CLK), PLLSAI2 VCO (PLLADC2CLK). In this mode, a programmable divider factor can be selected (1, 2, ..., 256 according to bits PREC[3:0]).
- The ADC clock can be derived from the AHB clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4). In this mode, a programmable divider factor can be selected (/1, 2 or 4 according to bits CKMODE[1:0]).

Refer to the STM32L1 and STM32L4 series reference manuals for more details.

• DAC:

In STM32L4 series, in addition to the PCLK1 clock, LSI clock is used for the sample and hold operation.

• U(S)ARTs:

In STM32L1 series, the U(S)ART clock is APB1 or APB2 clock (depending on which APB bus the U(S)ART) is mapped to.

In STM32L4 series, the U(S)ART clock is derived from one of the four following sources: system clock (SYSCLK), HSI16, LSE, APB1 or APB2 clock (depending on which APB bus the U(S)ART is mapped to).

Using a source clock independent from the system clock (ex: HSI16) allows to change the system clock on the fly without need to reconfigure U(S)ART peripheral baud rate prescalers.

I2Cs:

In STM32L1 series, the I2C clock is APB1 clock (PCLK1).

In STM32L4 series, the I2C clock is derived from one of the three following sources: system clock (SYSCLK), HSI16, APB1 (PCLK1).

Using a source clock independent from the system clock (ex: HSI16) allows to change the system clock on the fly without need to reconfigure I2C peripheral timing register.



### 4.6 PWR

In STM32L4 series the PWR controller presents some differences versus STM32L1 series, these differences are summarized in *Table 13*.



| PWR            | STM32L1 series                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STM32L4 series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | $V_{DD}$ = 1.8 V (at power on) or 1.65 V (at power<br>down) to 3.6 V when the BOR is available.<br>$V_{DD}$ = 1.65 V to 3.6 V, when BOR is not<br>available.<br>$V_{DD}$ is the external power supply for I/Os and<br>internal regulator. It is provided externally<br>through $V_{DD}$ pins.                                                                                                                                                                           | $V_{DD}$ = 1.71 to 3.6 V: external power supply for I/Os, and internal regulator. It is provided externally through $V_{DD}$ pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | $V_{CORE}$ = 1.2 to 1.8 V<br>$V_{CORE}$ is the power supply for digital<br>peripherals, SRAM and Flash memory. It is<br>generated by a internal voltage regulator. Three<br>$V_{CORE}$ ranges can be selected by software<br>depending on $V_{DD}$ and target frequency.                                                                                                                                                                                                | $V_{CORE}$ = 1.0 to 1.2 V<br>$V_{CORE}$ is the power supply for digital<br>peripherals, SRAM and Flash memory. It is<br>generated by a internal voltage regulator. Two<br>$V_{CORE}$ ranges can be selected by software<br>depending on target frequency.                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{BAT}$ = 1.55 to 3.6 V: power supply for RTC,<br>external clock 32 kHz oscillator and backup<br>registers (through power switch) when V <sub>DD</sub> is<br>not present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | $V_{\text{DD}}$ and $V_{\text{DDA}}$ must be at the same voltage value.                                                                                                                                                                                                                                                                                                                                                                                                 | Independent power supplies (V <sub>DDA</sub> , V <sub>DDUSB</sub> , V <sub>DDIO2</sub> ) allow to improve power consumption by running MCU at lower supply voltage than analog and USB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Power supplies | $V_{SSA}$ , $V_{DDA}$ = 1.8 V (at power on) or 1.65 V (at<br>power down) to 3.6 V, when BOR is available<br>and $V_{SSA}$ , $V_{DDA}$ = 1.65 to 3.6 V, when BOR is<br>not available.<br>$V_{DDA}$ is the external analog power supply for<br>ADC, DAC, reset blocks, RC oscillators and<br>PLL. The minimum voltage to be applied to<br>$V_{DDA}$ is 1.8 V when the ADC is used.<br>$V_{DDA}$ and $V_{SSA}$ must be connected to $V_{DD}$ and<br>$V_{SS}$ respectively. | $\begin{array}{l} V_{SSA},  V_{DDA} = \\ 1.62  V  (ADCs/COMPs)  \mathrm{to}  3.6  V \\ 1.8  V  (DACs/OPAMPs)  \mathrm{to}  3.6  V \\ 2.4  V  (VREFBUF)  \mathrm{to}  3.6  V \\ V_{DDA}  \mathrm{is}  \mathrm{the}  \mathrm{external}  \mathrm{analog}  \mathrm{power}  \mathrm{supply}  \mathrm{for} \\ A/D  \mathrm{and}  D/A  \mathrm{converters},  \mathrm{voltage}  \mathrm{reference} \\ \mathrm{buffer},  \mathrm{operational}  \mathrm{amplifiers}  \mathrm{and}  \mathrm{comparators}. \\ \mathrm{The}  V_{DDA}  \mathrm{voltage}  \mathrm{level}  \mathrm{is}  \mathrm{independent}  \mathrm{from}  \mathrm{the} \\ V_{DD}  \mathrm{voltage}. \end{array}$ |
|                | V <sub>LCD</sub> = 2.5 to 3.6 V<br>The LCD controller can be powered either<br>externally through the VLCD pin, or internally<br>from an internal voltage generated by the<br>embedded step-up converter.                                                                                                                                                                                                                                                               | V <sub>LCD</sub> = 2.5 to 3.6 V (idem STM32L1 series)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{DDUSB}$ = 3.0 to 3.6 V<br>$V_{DDUSB}$ is the external independent power<br>supply for USB transceivers. The $V_{DDUSB}$<br>voltage level is independent from the $V_{DD}$<br>voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{DDIO2}$ = 1.08 V to 3.6 V<br>V <sub>DDIO2</sub> is the external power supply for 14 I/Os<br>(PG[15:2]). The V <sub>DDIO2</sub> voltage level is<br>independent from the V <sub>DD</sub> voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 13. PWR differences between STM32L1 series and STM32L4 series



| PWR                      | STM32L1 series                                                             | STM32L4 series                                                                                                                                                                              |  |  |
|--------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Battery backup<br>domain | NA                                                                         | <ul> <li>RTC with backup registers (128 bytes)</li> <li>LSE</li> <li>PC13 to PC15 I/Os</li> <li>3 tamper pins</li> </ul>                                                                    |  |  |
|                          | Integrated POR / PDR circuitry<br>Programmable voltage detector (PVD)      |                                                                                                                                                                                             |  |  |
| Power supply supervisor  | Brownout reset (BOR)<br>BOR can be disabled after power-on                 | Brownout reset (BOR)<br>BOR is always enabled, except in Shutdown<br>mode                                                                                                                   |  |  |
| Supervisor               | NA                                                                         | 4 peripheral voltage monitoring (PVM)<br>– PVM1 for V <sub>DDUSB</sub><br>– PVM2 for V <sub>DDIO2</sub><br>– PVM3/PVM4 for V <sub>DDA</sub> (~1.65 V/ ~2.2 V)                               |  |  |
|                          | Sleep mode                                                                 | Sleep mode                                                                                                                                                                                  |  |  |
|                          | Low-power run mode (up to 128 kHz)<br>Low-power sleep mode (up to 128 kHz) | Low-power run mode (up to 2 MHz)<br>Low-power sleep mode (up to 2 MHz)<br>System clock is limited to 2 MHz, but I2C and<br>U(S)ART/LPUART can be clocked with HSI16<br>at 16 MHz.           |  |  |
| Low-power<br>modes       | Stop mode                                                                  | Stop 0, Stop 1 and Stop 2 mode<br>Some additional functional peripherals (cf<br>wakeup source)                                                                                              |  |  |
|                          | Standby mode (V <sub>CORE</sub> domain powered off)                        | Standby mode (V <sub>CORE</sub> domain powered off)<br>with new features:<br>– BOR is always ON<br>– SRAM2 content can be preserved<br>– Pull-up or pull-down can be applied on each<br>I/O |  |  |
|                          | NA                                                                         | Shutdown mode (V <sub>CORE</sub> domain powered off and power monitoring off)                                                                                                               |  |  |

### Table 13. PWR differences between STM32L1 series and STM32L4 series (continued)



| PWR                | STM32L1 series                                                                                          | STM32L4 series                                                                                                                                                                                                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | <u>Sleep mode</u><br>Any peripheral interrupt/wakeup event                                              | Sleep mode<br>Any peripheral interrupt/wakeup event                                                                                                                                                                                                                                                      |
| Wake-up<br>sources | Stop mode<br>Any EXTI line event/interrupt<br>BOR, PVD, COMP, RTC, USB, IWDG                            | Stop mode<br>Any EXTI line event/interrupt<br>BOR, PVD, PVM, COMP, RTC, USB, IWDG,<br>U(S)ART, LPUART, I2C, SWP, LPTIM, LCD                                                                                                                                                                              |
|                    | <u>Standby mode</u><br>3 WKUP pins rising edge<br>RTC event<br>External reset in NRST pin<br>IWDG reset | <u>Standby mode</u><br>5 WKUP pins rising or falling edge<br>RTC event<br>External reset in NRST pin<br>IWDG reset                                                                                                                                                                                       |
|                    | NA                                                                                                      | <u>Shutdown mode</u><br>5 WKUP pins rising or falling edge<br>RTC event<br>External reset in NRST pin                                                                                                                                                                                                    |
| Wake-up clocks     | Wakeup from Stop mode<br>MSI (all ranges up to 4.1 MHz)                                                 | Wakeup from Stop mode<br>HSI16 16 MHz or MSI (all ranges up to<br>48 MHz) allowing 5 µs wakeup at high speed<br>without waiting for PLL startup time.                                                                                                                                                    |
|                    | Wakeup from Standby mode<br>MSI 2.097 MHz                                                               | Wakeup from Standby mode<br>MSI (ranges from 1 to 8 MHz)                                                                                                                                                                                                                                                 |
|                    | NA                                                                                                      | Wakeup from Shutdown mode<br>MSI 4 MHz                                                                                                                                                                                                                                                                   |
| Configuration      | _                                                                                                       | In STM32L4 series the registers are different:<br>From 2 registers in STM32L1 series to 23<br>registers in STM32L4 series<br>- 4 control registers<br>- 2 status registers<br>- 1 status clear register<br>- 2 registers per GPIO port (A,B,H) for<br>controlling pull-up and pull-down<br>(16registers) |

#### Table 13. PWR differences between STM32L1 series and STM32L4 series (continued)

= Same feature, but specification change or enhancement
 = Feature not available (NA)

= Difference between STM32L1 and STM32L4 series highlight



### 4.7 RTC

The STM32L4 and STM32L1 series implement almost the same feature on the RTC.

| RTC                                                                   | STM32L1 series                                                                                                       | STM32L4 series                                                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Features                                                              | Coarse digital calibration (kept for compatibility<br>only. New developments should only use<br>smooth calibration). | Only smooth calibration available.                                                                                                                                                                           |  |  |
| Configuration                                                         | -                                                                                                                    | <ul> <li>RTC_CR/DCE not available</li> <li>RTC_CALIB register not available</li> <li>RTC_TAFCR (L1) -&gt; RTC_TAMPCR (L4)</li> <li>Except bit ALARMOUTTYPE available on<br/>RTC_OR/RTC_ALARM_TYPE</li> </ul> |  |  |
| Color key:<br>= Same feature, but specification change or enhancement |                                                                                                                      |                                                                                                                                                                                                              |  |  |

= Feature not available (NA)

For more information about STM32L4 series RTC features, please refer to RTC section of STM32L4 series reference manuals.



### 4.8 SYSCFG and RI

The STM32L4 and STM32L1 series implement almost the same feature on the SYSCFG. The table below shows the differences.

| SYSCFG/RI                                               | STM32L1 series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STM32L4 series                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RI features                                             | <ul> <li>TIM2/TIM3/TIM4's input captures 1,2,3 and four routing selections from selectable I/Os</li> <li>Routing of internal reference voltage VREFINT to selectable I/Os for all packages</li> <li>Up to 40 external I/Os + 3 internal nodes (internal reference voltage + temperature sensor + V<sub>DD</sub> and V<sub>DD</sub>/2 measurement by VCOMP) can be used for data acquisition purposes in conjunction with the ADC interface</li> <li>Input and output routing of COMP1 and COMP2</li> </ul> | The RI IO switches control used for the Touch Sense<br>application has been replaced by a dedicated<br>peripheral (TSC) in STM32L4 series.<br>The remaining switches control (for ADC, COMP)<br>and internal interconnects are managed inside each<br>specific peripheral in STM32L4 series. The overall<br>functionality is not equivalent.                    |  |  |
| Configuration                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Most registers from STM32L1 series can be found in<br/>STM32L4 series:</li> <li>SYSCFG_MEMRMP:<br/>bits[9:8] (BOOT_MODE) have no equivalent in<br/>STM32L4 series</li> <li>SYSCFG_PMC: no equivalent in STM32L4 series</li> <li>SYSCFG_EXTICR1/2/3/4: values for each<br/>EXTIx[3:0] mapping to PAx,PHx is different in<br/>STM32L4 series.</li> </ul> |  |  |
| Color key:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| = Same feature, but specification change or enhancement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| = Feature not available (NA)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |  |  |

57

#### 4.9 **GPIO**

The STM32L4 series GPIO peripheral embeds identical features compared to STM32L1 series.

Minor adaptation of the code written for the STM32L1 series using the GPIO may be required in STM32L4 series due to:

- Mapping of particular function on different GPIOs (see pinout difference in Section 2: Hardware migration)
- Alternate function selection differences (AFSELy[3:0] in registers GPIOx\_AFRL and **GPIOx AFRH**)

Below are the main GPIO features:

- GPIO mapped on AHB bus for better performance
- I/O pin multiplexer and mapping: pins are connected to on-chip peripherals/modules through a multiplexer that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In this way, there cannot be any conflict between peripherals sharing the same I/O pin.
- More possibilities and features for I/O configuration

For more information about STM32L4 series GPIO programming and usage, please refer to the "I/O pin multiplexer and mapping" subsection in the GPIO section of the STM32L4 reference manuals and to the product datasheets for detailed description of the pinout and alternate function mapping.

#### 4.10 **EXTI** source selection

The external interrupt/event controller (EXTI) is very similar on both STM32L1 and STM32L4 series. The table below shows the main differences.

| EXTI                        | STM32L1 series | STM32L4 series                                                                                                                                                                                                |
|-----------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nb of event/interrupt lines | Up to 24 lines | Up to 40 lines<br>(14 direct, 26 configurable)                                                                                                                                                                |
| Configuration               | -              | The selection of EXTI line source is<br>performed through EXTIx bits in<br>SYSCFG_EXTICRx registers (in<br>STM32L1 and STM32L4 series).<br>However, the mapping of the EXTICRx<br>registers has been changed. |
| Color key:                  |                | registers has been changed.                                                                                                                                                                                   |

= Same feature, but specification change or enhancement



#### 4.11 FLASH

The table below presents the difference between the FLASH interface of STM32L1 series and STM32L4 series.

The STM32L4 instantiates a different FLASH module both in terms of architecture/technology and interface, consequently the STM32L4 series Flash memory programming procedures and registers are different from the STM32L1 series, and any code written for the Flash memory interface in the STM32L1 series needs to be rewritten to run in STM32L4 series.

For more information on programming, erasing and protection of the STM32L4 series Flash memory, please refer to the STM32L4 reference manuals.

| FLASH                          | STM32L1 series                                                                                                                                     | STM32L4 series                                                                                         |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
|                                | 0x0800 0000 – (up to) 0x0805 FFFF                                                                                                                  | 0x0800 0000 - up to 0x080F FFFF                                                                        |  |  |
| Main/Program memory            | Up to 512 Kbyte<br>Split in 2 Banks<br>Each bank: up to 256 Kbyte<br>Sector size = 4 Kbyte: 16 Pages of<br>256 bytes                               | Up to 1 Mbyte<br>Split in 2 Banks<br>Each bank: 256 pages of 2 Kbyte<br>Each page: 8 rows of 256 Bytes |  |  |
|                                | Programming granularity: 32-bit<br>Read granularity: 64/32-bit                                                                                     | Programming and Read granularity 72-bit (incl 8 ECC bits)                                              |  |  |
| Features                       | Read while write (RWW)<br>Dual bank boot<br>ECC (data EEPROM only)                                                                                 | Read while write (RWW)<br>Dual bank boot<br>ECC                                                        |  |  |
| Wait State                     | Up to 1 (depending on the supply voltage and frequency)                                                                                            | Up to 4 (depending on the core voltage and frequency)                                                  |  |  |
| ART Accelerator™               | NA                                                                                                                                                 | Allowing 0 wait state when executing from the cache.                                                   |  |  |
| Data EEPROM memory             | 0x0808 0000 - 0x0808 0FFF (Cat.1,2)<br>0x0808 0000 - 0x0808 1FFF (Cat.3)<br>0x0808 0000 - 0x0808 2FFF (Cat.4)<br>0x0808 0000 - 0x0808 3FFF (Cat.5) | N/A<br>can be emulated by SW                                                                           |  |  |
| System memory                  | 0x1FF0 0000 - 0x1FF0 0FFF (Cat1,2)<br>0x1FF0 0000 - 0x1FF0 1FFF (Cat.3,4,5)                                                                        | 0x1FFF 0000 – 0x1FFF 6FFF (bank1)<br>0x1FFF 8000 – 0x1FFF EFFF<br>(bank2)                              |  |  |
| One Time programmable<br>(OTP) | NA                                                                                                                                                 | 0x1FFF 7000 - 0x1FFF 73FF (bank1)                                                                      |  |  |
| Option Bytes                   | 0x1FF8 0000 - 0x1FF8001F (all Cat.x)<br>0x1FF8 0080 - 0x1FF8 009F (Cat.4,5)                                                                        | 0x1FFF 7800 - 0x1FFF 780F (bank1)<br>0x1FFF F800 - 0x1FFF F80F (bank2)                                 |  |  |
| Flash memory interface         | 0x4002 3C00 - 0x4002 3FFF                                                                                                                          | 0x4002 2000 - 0x4002 23FF                                                                              |  |  |
|                                | -                                                                                                                                                  | Different from STM32L1 series                                                                          |  |  |

Table 17. FLASH differences between STM32L1 series and STM32L4 series



| FLASH                                       | STM32L1 series                                                                                            | STM32L4 series                                                                                                              |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Erase granularity                           | Program memory: Mass/Page (256 bytes)<br><u>DATA EEPROM memory:</u> byte/ halfword/<br>word / double word | Page erase (2Kbytes), Bank erase<br>and Mass erase (both banks)                                                             |  |  |  |
|                                             |                                                                                                           | Level 0 no protection<br>RDP = 0xAA                                                                                         |  |  |  |
| Read protection (RDP)                       | Level 1 memory protection<br>RDP ≠ (Level 2 & Level 0)                                                    |                                                                                                                             |  |  |  |
|                                             | Level 2 RDP                                                                                               | = 0xCC <sup>(1)</sup>                                                                                                       |  |  |  |
| Proprietary code readout protection (PCROP) | Granularity: 1 sector (4 Kbyte)                                                                           | 2 PCROP areas (1 per bank)<br>Granularity: 64-bit<br>PCROP_RDP option: PCROP area<br>preserved when RDP level<br>decreased. |  |  |  |
| Write protection (WRP)                      | Granularity: 1 sector (4 Kbyte)                                                                           | 4 write protection areas (2 per bank)<br>Granularity: 2 Kbyte                                                               |  |  |  |
|                                             | nRST_STOP                                                                                                 | nRST_STOP                                                                                                                   |  |  |  |
|                                             | nRST_STDBY                                                                                                | nRST_STDBY                                                                                                                  |  |  |  |
|                                             | IWDG_SW                                                                                                   | IWDG_SW                                                                                                                     |  |  |  |
|                                             | NA                                                                                                        | IWDG_STOP, IWDG_STDBY                                                                                                       |  |  |  |
| User Option bytes                           | NA                                                                                                        | WWDG_SW                                                                                                                     |  |  |  |
| User Option bytes                           | BOR_LEV[3:0]                                                                                              | BOR_LEV[2:0]                                                                                                                |  |  |  |
|                                             | nBFB2                                                                                                     | BFB2                                                                                                                        |  |  |  |
|                                             | NA                                                                                                        | nBOOT1                                                                                                                      |  |  |  |
|                                             | NA                                                                                                        | SRAM2_RST, SRAM2_PE                                                                                                         |  |  |  |
|                                             | NA                                                                                                        | DUAL BANK                                                                                                                   |  |  |  |
| Color key:                                  |                                                                                                           |                                                                                                                             |  |  |  |
| = New feature or new a                      | rchitecture (difference between STM32L1 and S                                                             | STM32L4 series)                                                                                                             |  |  |  |
| = Same feature, but spe                     | ecification change or enhancement                                                                         |                                                                                                                             |  |  |  |

| T-LL AT ELAOLI JUG              |                          |                            |
|---------------------------------|--------------------------|----------------------------|
| Table 17. FLASH differences bet | tween STM32L1 series and | STM32L4 Series (continued) |

= Feature not available (NA)

= Difference between STM32L1 and STM32L4 series highlight



## 4.12 U(S)ART

The STM32L4 series implement several new features on the U(S)ART compared to STM32L1 series.

The table below shows the differences.

| Table 18. U(S)ART differences between STM32L1 series and STM32L4 series |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

| U(S)ART   | STM32L1 series                                                                                                                                                    | STM32L4 series                                                                                                                                                                            |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instances | 3 x USART<br>2 x UART                                                                                                                                             | 3 x USART<br>2 x UART<br>1 x LPUART                                                                                                                                                       |  |
| Baud rate | Up to 4 Mbit/s<br>(when the clock frequency is 32 MHz and<br>oversampling is by 8)                                                                                | Up to 10 Mbit/s<br>(when the clock frequency is 80 MHz and<br>oversampling is by 8)                                                                                                       |  |
| Clock     | Single clock domain                                                                                                                                               | <ul> <li>Dual clock domain allowing:</li> <li>UART functionality and wakeup from Stop mode</li> <li>Convenient baud rate programming independent from the PCLK reprogramming</li> </ul>   |  |
| Data      | Word length: Programmable (8 or 9 bits)                                                                                                                           | <b>Word length</b> : Programmable (7, 8 or 9 bits)<br>Programmable data order with MSB-first or<br>LSB-first shifting                                                                     |  |
| Interrupt | 10 interrupt sources with flags                                                                                                                                   | 14 interrupt sources with flags                                                                                                                                                           |  |
| Features  | RS232 hardware flow cont<br>Continuous communication<br>Multiprocessor communica<br>Single-wire half-duplex con<br>IrDA SIR ENDEC block<br>LIN mode<br>SPI master | n using DMA<br>ation                                                                                                                                                                      |  |
|           | Smartcard mode T = 0 and T = 1 is to be implemented by software.                                                                                                  | Smartcard mode $T = 0$ , $T=1$ are supported.<br>(features are added to support $T = 1$ such as<br>receiver timeout, block length, end of block<br>detection, binary data inversion etc). |  |
|           | Number of stop bits: 0.5, 1, 1.5, 2                                                                                                                               | Number of stop bits: 1, 1.5, 2                                                                                                                                                            |  |



| U(S)ART             | STM32L1 series                      | STM32L4 series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Features            | NA                                  | <ul> <li>Wakeup from STOP mode</li> <li>(Start Bit, Received Byte, Address match).</li> <li>Support for ModBus communication: <ul> <li>Timeout feature</li> <li>CR/LF character recognition.</li> </ul> </li> <li>Receiver timeout interrupt (except LPUART).</li> <li>Auto baud rate detection (except LPUART).</li> <li>Driver enable.</li> <li>Swappable Tx/Rx pin configuration.</li> <li>LPUART does not support Synchronous mode (SPI master), Smartcard mode, IrDA, LIN, ModBus, Receiver timeout interrupt, Auto baud rate detection.</li> </ul> |
| Configuration       | -                                   | L1 registers and associated bits are not<br>identical in STM32L4 series.<br>Please refer to STM32L4 reference manuals<br>for details.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Color key:          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| = New feature or ne | ew architecture (difference between | STM32L1 and STM32L4 series)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = Same feature, bu  | t specification change or enhancem  | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = Feature not avail | able (NA)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| = Difference betwe  | en STM32L1 and STM32L4 series I     | highlight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Table 18. U(S)ART differences between STM32L1 series and STM32L4 series (continued)

### 4.13 I2C

The STM32L4 implements a different I2C peripheral allowing easy software management. The table below shows the differences.

| 12C       | STM32L1 series                                                     | STM32L4 series                    |  |
|-----------|--------------------------------------------------------------------|-----------------------------------|--|
| Instances | x2 (I2C1, I2C2)                                                    | x3 (I2C1, I2C2, I2C3)             |  |
|           | 7-bit and 10-bit addressing mode                                   |                                   |  |
|           | SMBus                                                              |                                   |  |
| Features  | Standard mode (Sm, up to 100 kHz)<br>Fast mode (Fm, up to 400 kHz) |                                   |  |
|           |                                                                    | Fast mode Plus (Fm+, up to 1 MHz) |  |
|           | NA                                                                 | Independent clock                 |  |
|           |                                                                    | Wakeup from Stop on address match |  |

Table 19. I2C differences between STM32L1 series and STM32L4 series



#### Table 19. I2C differences between STM32L1 series and STM32L4 series (continued)

| I2C                                                                               | STM32L1 series | STM32L4 series                                                                                                                        |  |
|-----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration                                                                     | -              | Register configuration is very different in STM32L1 and STM32L4 series. Please refer to STM32L4 series reference manuals for details. |  |
| Color key:                                                                        |                |                                                                                                                                       |  |
| = New feature or new architecture (difference between STM32L1 and STM32L4 series) |                |                                                                                                                                       |  |
| = Same feature, but specification change or enhancement                           |                |                                                                                                                                       |  |
| = Difference between STM32L1 and STM32L4 series highlight                         |                |                                                                                                                                       |  |

#### 4.14 SPI

The STM32L4 and STM32L1 series implement almost the same features on the SPI (apart from I2S).

The table below shows the differences.

| SPI           | STM32L1 series                                | STM32L4 series                                                                                                            |
|---------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Instances     | x3 (SPI1, SPI2, SPI3)                         | x3 (SPI1, SPI2, SPI3)                                                                                                     |
| Features      | SPI + I2S                                     | I2S feature is not supported by SPI in<br>STM32L4 series, 2 SAI interfaces are available<br>instead.                      |
| Data size     | Fixed, configurable to 8 or 16 bits           | Programmable from 4 to 16-bit                                                                                             |
| Data buffer   | Tx & Rx 16-bit buffers<br>(single data frame) | 32-bit Tx & Rx FIFOs<br>(up to 4 data frames)                                                                             |
| Data packing  | No<br>(16-bit access only)                    | Yes<br>(8-bit, 16-bit or 32-bit data access,<br>programmable FIFOs data thresholds).                                      |
| Mode          | SPI TI mode<br>SPI Motorola mode              | SPI TI<br>SPI Motorola mode<br>NSSP mode                                                                                  |
| Speed         | 16 MHz (core at 32 MHz)                       | TBD                                                                                                                       |
| Configuration | -                                             | The data size and Tx/Rx flow handling are different in STM32L1 and STM32L4 series hence requiring different SW sequences. |
| Color key:    |                                               |                                                                                                                           |

#### Table 20. SPI differences between STM32L1 series and STM32L4 series

= New feature or new architecture (difference between STM32L1 and STM32L4 series)

- = Same feature, but specification change or enhancement
- = Difference between STM32L1 and STM32L4 series highlight



#### Migrating from I2S to SAI:

STM32L4 does not include I2S interface part of the SPI peripheral, instead it includes two serial audio interfaces.

The table below shows main differences between I2S and SAI.

|           | Table 21. Migrating from I2S to SAI                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I2S/SAI   | STM32L1 series (I2S)                                                                                                                                                                                                                                                                                                           | STM32L4 series (SAI)                                                                                                                                                                                                       |  |  |
| Instances | x2                                                                                                                                                                                                                                                                                                                             | x2 (SAI1, SAI2)                                                                                                                                                                                                            |  |  |
|           | Full-duplex communication.                                                                                                                                                                                                                                                                                                     | Two independent audio sub-blocks (per SAI) which can be transmitters or receivers with their respective FIFOs.                                                                                                             |  |  |
|           | Master or slave operations.                                                                                                                                                                                                                                                                                                    | Synchronous or asynchronous mode between<br>the audio sub-blocks.<br>Possible synchronization between multiple<br>SAIs.<br>Master or slave configuration independent for<br>both audio sub-blocks.                         |  |  |
|           | 8-bit programmable linear prescaler to reach<br>accurate audio sample frequencies (from<br>8 kHz to 192 kHz).                                                                                                                                                                                                                  | Clock generator for each audio block to target<br>independent audio frequency sampling when<br>both audio sub-blocks are configured in master<br>mode.                                                                     |  |  |
| Features  | Data format may be 16-bit, 24-bit or 32-bit.<br>Data direction is always MSB first.                                                                                                                                                                                                                                            | Data size configurable: 8-, 10-, 16-, 20-, 24-,<br>32-bit.<br>First active bit position in the slot is<br>configurable.<br>LSB first or MSB first for data transfer.                                                       |  |  |
|           | Channel length is fixed to 16-bit (16-bit data<br>size) or 32-bit (16-bit, 24-bit, 32-bit data size)<br>by audio channel.                                                                                                                                                                                                      | Up to 16 slots available with configurable size.<br>Number of bits by frame can be configurable.<br>Frame synchronization active level<br>configurable (offset, bit length, level).<br>Stereo/mono audio frame capability. |  |  |
|           | Programmable clock polarity (steady state)                                                                                                                                                                                                                                                                                     | Communication clock strobing edge configurable (SCK).                                                                                                                                                                      |  |  |
|           | 16-bit register for transmission and reception with one data register for both channel sides.                                                                                                                                                                                                                                  | 8-word integrated FIFOs for each audio sub-<br>block (facilitating interrupt mode).                                                                                                                                        |  |  |
|           | <ul> <li>Supported I2S protocols:</li> <li>I2S Philips standard</li> <li>MSB-justified standard (left-justified)</li> <li>LSB-justified standard (right-justified)</li> <li>PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame).</li> </ul> | Audio protocol:<br>I2S, LSB or MSB-justified, PCM/DSP, TDM (up<br>to 16 channels), AC'97.<br>SPDIF output.                                                                                                                 |  |  |
|           | DMA capability for transmission and reception (16-bit wide)                                                                                                                                                                                                                                                                    | 2-channel DMA per SAI                                                                                                                                                                                                      |  |  |

| Tahlo | 21          | Miar | nite | from | 129 | to SAI         |  |
|-------|-------------|------|------|------|-----|----------------|--|
| rable | <b>Z</b> 1. | wigr | aung | Irom | 123 | 10 <b>3</b> AI |  |



| STM32L1 series (I2S)                                                                                                                                                                                                                                                        | STM321 / sories (SAI)                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STM32L1 series (I2S) STM32L4 series (SAI)                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Master clock may be output to drive an external audio component.<br>Ratio is fixed at 256 × Fs (where Fs is the audio sampling frequency)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Interruption sources when enabled:<br>– Errors<br>– Tx buffer empty, Rx buffer not empty.                                                                                                                                                                                   | Interruption sources when enabled:<br>– Errors<br>– FIFO requests.                                                                                                                                                                                                                                                                                                                       |  |
| <ul> <li>Error flags with associated interrupts if enabled respectively:</li> <li>Overrun and underrun detection,</li> <li>Anticipated frame synchronization signal detection in slave mode,</li> <li>Late frame synchronization signal detection in slave mode,</li> </ul> | Idem STM32L1 series<br>+ Protection against misalignment in case of<br>underrun and overrun.                                                                                                                                                                                                                                                                                             |  |
| _                                                                                                                                                                                                                                                                           | There is no compatibility between STM32L1<br>series I2S and STM32L4 series SAI. User will<br>have to configure the SAI interface for the<br>target protocol. Please refer to reference<br>manuals for details.                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                          |  |
| e or new architecture (difference between STM32<br>re, but specification change or enhancement                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                             | Ratio is fixed at 256 × Fs (where I<br>Interruption sources when enabled:<br>– Errors<br>– Tx buffer empty, Rx buffer not empty.<br>Error flags with associated interrupts if enabled<br>respectively:<br>– Overrun and underrun detection,<br>– Anticipated frame synchronization signal<br>detection in slave mode,<br>– Late frame synchronization signal detection<br>in slave mode, |  |

Table 21. Migrating from I2S to SAI (continued)

The SAI peripheral improves robustness of communication in slave mode compared to I2S peripheral (in case of data clock glitch for example)

**In master mode**, while migrating an application from STM32L1 to STM32L4 series, the user should review the possible master clock (MCLK), data bit clock (SCK) and frame synchronization (FS) frequency reachable using STM32L4 PLL multiplication factors and SAI internal clock divider for a given external oscillator which can be different than with STM32L1 series I2S.

In STM32L4 MCUs, the SAI1 and SAI2 input clocks are derived (selected by software) from one of the four following sources:

- an external clock mapped on SAI1\_EXTCLK for SAI1 and SAI2\_EXTCLK for SAI2.
- PLLSAI1 (P) divider output (PLLSAI1CLK)
- PLLSAI2 (P) divider output (PLLSAI2CLK)
- main PLL (P) divider output (PLLSAI3CLK)

When the clock is derived from one of the three internal PLLs, the three PLL inputs are either HSI16, HSE or MSI (between 4 and 8 MHz) divided by a programmable factor PLLM (from 1 to 8). This input is then multiplied by PLLN (from 8 to 86) to reach PLL VCO frequency (should be between 64 and 344 MHz). It is finally divided by PLLP (7 or 17) to provide the input clock for SAI (max. 80 MHz)



When the Master clock MCLK is used by the external slave audio peripheral, the PLL output is divided by SAI internal master clock divider factor (1, 2, 4, 6, 8, 10, ..., 30) to provide the master clock (MCLK). The data bit clock is then derived from MCLK following the formula:

$$SCK = MCLK \times (FRL + 1)/256$$

where (FRL + 1) = 8, 16, 32, 64, 128, 256:

- FRL is the number of bit clock cycles -1 in the audio frame.
- (FRL + 1) should be a power of 2 higher or equal to 8.

SCK can also be directly connected to input clock of SAI when MCLK output is not needed. The frame synchronization (FS) frequency is always MCLK / 256.

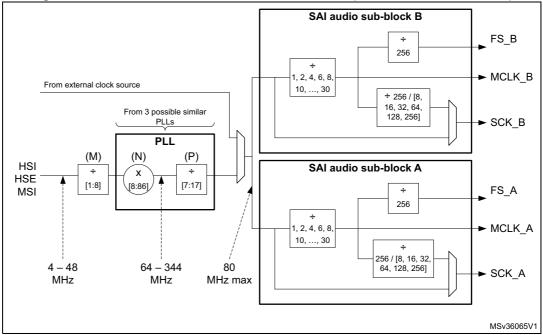



Figure 5. Generation of clock for SAI master mode (in case MCLK is needed)

Please refer to reference manuals for more details.



### 4.15 CRC

The cyclic redundancy check (CRC) calculation unit is very similar in STM32L1 and STM32L4 series.

The table below shows the differences.

| CRC           | STM32L1 series                                                                                                                                                                                  | STM32L4 series                                                                                                                                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Single input/output 32-bit data register.<br>CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size.<br>General-purpose 8-bit register (can be used for temporary storage). |                                                                                                                                                                                                                                                |
| Features      | Uses CRC-32 (Ethernet) polynomial:<br>0x4C11DB7.<br>Handles 32-bit data size.                                                                                                                   | Fully programmable polynomial with<br>programmable size (7, 8, 16, 32bits)<br>Handles 8-,16-, 32-bit data size.<br>Programmable CRC initial value.<br>Input buffer to avoid bus stall during calculation.<br>Reversibility option on I/O data. |
| Configuration | -                                                                                                                                                                                               | Configuration registers in STM32L1 series are<br>identical in STM32L4 series. STM32L4 series<br>includes additional registers for new features.<br>Please refer to reference manuals for details.                                              |
| Color key:    |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |

= New feature or new architecture (difference between STM32L1 and STM32L4 series)



### 4.16 AES

The STM32L4 series implement several new features on the AES compared to STM32L1 series.

The table below shows the differences.

| Table 23. AES differences between STM32L1 series and STM | 132L4 series |
|----------------------------------------------------------|--------------|
|----------------------------------------------------------|--------------|

| AES           | STM32L1 series                                                                       | STM32L4 series                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Features      | 128-bit register for storing the encryption or derivation key (4x 32-bit registers). | 256-bit register for storing the encryption,<br>decryption or derivation key (8x 32-bit<br>registers).                                                                                                                      |
| Mode          | Electronic codebook (ECB).<br>Cipher block chaining (CBC).<br>Counter mode (CTR).    | Electronic codebook (ECB).<br>Cipher block chaining (CBC).<br>counter mode (CTR).<br>Galois counter mode (GCM).<br>Galois message authentication code mode<br>(GMAC).<br>Cipher message authentication code mode<br>(CMAC). |
| Key length    | 128-bit                                                                              | 128-bit, 256-bit                                                                                                                                                                                                            |
| Configuration | -                                                                                    | All registers and programming bits in STM32L1 series can be found in STM32L4 series.                                                                                                                                        |

Color key:

= New feature or new architecture (difference between STM32L1 and STM32L4 series)

= Same feature, but specification change or enhancement

### 4.17 LCD

The STM32L4 series LCD implements the same features than the STM32L1 series except for additional internal output buffers that allow to further improve contrast (it is possible to use output buffers instead of high drive resistive network).

All programmable registers and associated bits in STM32L1 series are equivalent in STM32L4 series. However, due to the fact that VLCD pin is implemented as alternate function in STM32L4 series (contrary to STM32L1 series), a specific SW sequence is required to configure the LCD when the step-up converter is used as power source.

Please refer to reference manuals for more details.



### 4.18 USB

The STM32L4 and STM32L1 series implement different USB peripherals.

While STM32L1 series implements a USB FS device interface, the STM32L4 series implements a USB OTG FS interface.

Most features supported by STM32L1 series are also supported by STM32L4 series.

The key differences are listed below.

| STM32L1 series                                                                                                                                                                                | STM32L4 series                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Universal serial bus Revision 2.0.                                                                                                                                                            | Universal serial bus Revision 2.0, including link power management (LPM) support                                                                                                                                                                                                                                                                                                                  |  |
| NA                                                                                                                                                                                            | Full support for the USB on-the-go (USB OTG).                                                                                                                                                                                                                                                                                                                                                     |  |
| <ul> <li><u>FS mode</u>:</li> <li>1 bidirectional control endpoint</li> <li>7 IN endpoints (Bulk, Interrupt, Isochronous)</li> <li>7 OUT endpoints (Bulk, Interrupt, Isochronous).</li> </ul> | <ul> <li><u>FS mode</u>:</li> <li>1 bidirectional control endpoint</li> <li>5 IN endpoints (Bulk, Interrupt, Isochronous)</li> <li>5 OUT endpoints (Bulk, Interrupt, Isochronous).</li> </ul>                                                                                                                                                                                                     |  |
| USB internal connect/disconnect feature with an internal pull-up resistor on the USB D+ (USB_DP) line.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| NA                                                                                                                                                                                            | Attach Detection Protocol (ADP)<br>Battery Charging Detection (BCD)                                                                                                                                                                                                                                                                                                                               |  |
| NA                                                                                                                                                                                            | Independent $V_{\text{DDUSB}}$ power supply allowing lower $V_{\text{DDCORE}}$ while using USB.                                                                                                                                                                                                                                                                                                   |  |
| APB1                                                                                                                                                                                          | AHB2                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 512bytes (endpoint buffers and buffer descriptors structure).                                                                                                                                 | 1.25Kbytes data FIFOs<br>Management of up to 6 Tx FIFOs (1 for each IN<br>end point) + 1 Rx FIFO.                                                                                                                                                                                                                                                                                                 |  |
| USB suspend and resume                                                                                                                                                                        | USB suspend and resume.<br>Link power management (LPM) support.                                                                                                                                                                                                                                                                                                                                   |  |
| -                                                                                                                                                                                             | In STM32L4 series the registers are different.<br>Please refer to reference manuals for details.                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                               | Universal serial bus Revision 2.0.          NA         FS mode:         - 1 bidirectional control endpoint         - 7 IN endpoints (Bulk, Interrupt, Isochronous)         - 7 OUT endpoints (Bulk, Interrupt, Isochronous).         USB internal connect/disconnect feature with ar (USB_DP) line.         NA         APB1         512bytes (endpoint buffers and buffer descriptors structure). |  |

Color key:

= New feature or new architecture (difference between STM32L1 and STM32L4 series)

= Same feature, but specification change or enhancement

= Feature not available (NA)

= Difference between STM32L1 and STM32L4 series highlight



### 4.19 ADC

The table below presents the differences between the ADC peripheral of STM32L1 series and STM32L4 series, these differences are the following:

- New digital interface
- New architecture and new features.

#### Table 25. ADC differences between STM32L1 series and STM32L4 series

| ADC                           | STM32L1 series                                                                                                                                                                              |                                                                                                                                                                                              | STM32L4 series                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADC Type                      | SAR structure                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |  |
| Instances                     | ADC1                                                                                                                                                                                        |                                                                                                                                                                                              | ADC1 / ADC2 / ADC3                                                                                                                                                                                                                                                                                                      | ADC1 / ADC2 / ADC3                                                                                                                                                                                                                                                          |  |
| Maximum sampling<br>frequency | 1 Msps                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                         | 5.1 Msps (fast channels)<br>4.8 Msps (slow channels)                                                                                                                                                                                                                        |  |
| Number of channels            | up to 42 channels                                                                                                                                                                           |                                                                                                                                                                                              | Up to 19 channels pe                                                                                                                                                                                                                                                                                                    | Up to 19 channels per ADC                                                                                                                                                                                                                                                   |  |
| Resolution                    | 12-bit                                                                                                                                                                                      |                                                                                                                                                                                              | 12-bit + digital oversa                                                                                                                                                                                                                                                                                                 | 12-bit + digital oversampling up to 16-bit                                                                                                                                                                                                                                  |  |
| Conversion Modes              | Single / continuous / scan / discontinuous                                                                                                                                                  |                                                                                                                                                                                              | Single / continuous / dual mode                                                                                                                                                                                                                                                                                         | Single / continuous / scan / discontinuous<br>dual mode                                                                                                                                                                                                                     |  |
| DMA                           |                                                                                                                                                                                             |                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                             |  |
|                               |                                                                                                                                                                                             |                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                             |  |
| External Trigger              | External event for<br>regular group<br>TIM9_CC2<br>TIM9_TRGO<br>TIM2_CC3<br>TIM2_CC2<br>TIM3_TRGO<br>TIM4_CC4<br>TIM2_TRGO<br>TIM3_CC1<br>TIM3_CC3<br>TIM4_TRGO<br>TIM6_TRGO<br>EXTI line11 | External event for<br>injected group<br>TIM9_CC1<br>TIM9_TRGO<br>TIM2_TRGO<br>TIM2_CC1<br>TIM3_CC4<br>TIM4_TRGO<br>TIM4_CC1<br>TIM4_CC2<br>TIM4_CC3<br>TIM10_CC1<br>TIM7_TRGO<br>EXTI line15 | External event for<br>regular group:<br>TIM1 CC1<br>TIM1 CC2<br>TIM1 CC3<br>TIM2 CC2<br>TIM3 TRGO<br>TIM4 CC4<br>EXTI line 11<br>TIM8_TRGO<br>TIM8_TRGO2<br>TIM1_TRGO2<br>TIM1_TRGO2<br>TIM1_TRGO2<br>TIM1_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO<br>TIM4_TRGO | External event for<br>injected group:<br>TIM1 TRGO<br>TIM1 CC4<br>TIM2 TRGO<br>TIM2 CC1<br>TIM2 CC1<br>TIM3 CC4<br>TIM4 TRGO<br>EXTI line15<br>TIM8_CC4<br>TIM1_TRGO2<br>TIM8_TRGO<br>TIM8_TRGO2<br>TIM3_CC3<br>TIM3_CC3<br>TIM3_CC1<br>TIM3_CC1<br>TIM6_TRGO<br>TIM15_TRGO |  |
| Supply requirement            | 1.8 V to 3.6 V                                                                                                                                                                              |                                                                                                                                                                                              | 1.62 V to 3.6 V<br>Independent power s                                                                                                                                                                                                                                                                                  | upply (V <sub>DDA</sub> )                                                                                                                                                                                                                                                   |  |
| Reference Voltage             | External                                                                                                                                                                                    |                                                                                                                                                                                              | Reference voltage for external (2.0 V to $V_{DI}$ or 2.5 V)                                                                                                                                                                                                                                                             | r STM32L4 series<br><sub>DA</sub> ) or internal (2.048 V                                                                                                                                                                                                                    |  |



| ADC                                                                               | STM32L1 series STM32L4 series                                                                    |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Electrical<br>Parameters                                                          | 1.45 mA (max.), 1.0 mA (Typ.)Consumption proportional to conversion<br>speed: 200 μA/Msps (Typ.) |  |  |
| Input range                                                                       | $V_{\text{REF-}} \le V_{\text{IN}} \le V_{\text{REF+}}$                                          |  |  |
| Color key:                                                                        |                                                                                                  |  |  |
| = New feature or new architecture (difference between STM32L1 and STM32L4 series) |                                                                                                  |  |  |
| = Same feature, but specification change or enhancement                           |                                                                                                  |  |  |

#### Table 25. ADC differences between STM32L1 series and STM32L4 series (continued)

### 4.20 DAC

The STM32L4 series implement some enhanced DAC compared to STM32L1 series.

The table below shows the differences.

Table 26. DAC differences between STM32L1 series and STM32L4 series

| DAC                  | STM32L1 series                                                                                                                                           | STM32L4 series                                                                                                                                  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instances            | x2                                                                                                                                                       |                                                                                                                                                 |  |
| Resolution           | 12-bit                                                                                                                                                   |                                                                                                                                                 |  |
|                      | Left or right data alignment in 12-bit mode<br>Noise-wave and triangular-wave generation<br>Dual DAC channel for independent or simultaneous conversions |                                                                                                                                                 |  |
| Features             | NA                                                                                                                                                       | Buffer offset calibration.<br>DAC_OUTx can be disconnected from output<br>pin.<br>Sample and hold mode for low power operation<br>in Stop mode. |  |
| DMA                  | Y                                                                                                                                                        | es                                                                                                                                              |  |
|                      | Yes                                                                                                                                                      |                                                                                                                                                 |  |
| External Trigger     | TIM6 TRGO<br>TIM7 TRGO<br>TIM9 TRGO<br>TIM2 TRGO<br>TIM4 TRGO<br>EXTI line9<br>SW TRIG                                                                   | TIM6 TRGO<br>TIM8 TRGO<br>TIM7 TRGO<br>TIM5 TRGO<br>TIM2 TRGO<br>TIM4 TRGO<br>EXTI line9<br>SW TRIG                                             |  |
| Supply requirement   | 1.8 V to 3.6 V                                                                                                                                           | 1.8 V to 3.6 V<br>Independent power supply (V <sub>DDA</sub> )                                                                                  |  |
| Reference<br>Voltage | External                                                                                                                                                 | Reference voltage for STM32L4 series external (1.8 V to $V_{DDA}$ ) or internal (2.048 V or 2.5 V)                                              |  |



| DAC                                                                               | STM32L1 series | STM32L4 series                                     |
|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------|
| Configuration                                                                     | -              | SW compatible except for output buffer management. |
| Color key:                                                                        |                |                                                    |
| = New feature or new architecture (difference between STM32L1 and STM32L4 series) |                |                                                    |
| = Same feature, but specification change or enhancement                           |                |                                                    |
| = Feature not available (NA)                                                      |                |                                                    |
| = Difference between STM32L1 and STM32L4 series highlight                         |                |                                                    |

 Table 26. DAC differences between STM32L1 series and STM32L4 series (continued)

### 4.21 COMP

The table below presents the differences between the COMP interface of STM32L1 series and STM32L4 series:

| СОМР     | STM32L1 series                                                                                                                                                                | STM32L4 series                                                                                                                                  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре     | COMP1 fixed threshold<br>COMP2 rail-to-rail                                                                                                                                   | COMP1, COMP2 rail-to-rail                                                                                                                       |  |
|          | COMP1:<br>- 25 (Cat.1,2) (24 ext IO + T sensor)<br>- 32 (Cat.3,4,5) (29 ext IO + T sensor +<br>OPAMP1/2)                                                                      | <b>COMP1:</b><br>Non Inverting:<br>– 2 (PC5, PB2)<br>Inverting:<br>– 8 (PB1,PC3, DAC_OUT1/2, V <sub>REFINT ×</sub> 1,<br>3/4, 1/2, 1/4)         |  |
| Inputs   | COMP2:<br>Non inverting:<br>- 2 (Cat.1,2) (PB4, PB5)<br>- 4 (Cat3,4,5) (PB4, PB5, PB6, PB7)<br>Inverting:<br>- 7 (PB3, DAC_OUT1/2, V <sub>REFINT x</sub> 1, 3/4,<br>1/2, 1/4) | COMP2:<br>Non Inverting:<br>– 2 (PB4, PB6)<br>Inverting:<br>– 8 (PB3, PB7, DAC_OUT1/2, V <sub>REFINT ×</sub> 1,<br>3/4, 1/2, 1/4)               |  |
| Outputs  | Generation of input capture and OCREF clear<br>signals for TIM2, TIM3, TIM4 and input<br>capture for TIM10.<br>Generation of wakeup interrupt or events<br>(EXTI line).       | Generation of break input signals for<br>TIM1/TIM8 through GPIO alternate function.<br>Generation of wakeup interrupt or events<br>(EXTI line). |  |
| Features | Window c                                                                                                                                                                      | omparator<br>Output with blanking source                                                                                                        |  |
| Features | Programmable speed/consumption (COMP2)                                                                                                                                        | Programmable hysteresis<br>Programmable speed/consumption<br>(COMP1/COMP2)                                                                      |  |

Table 27. COMP differences between STM32L1 series and STM32L4 series



| Table 27. COMP differences between STM32LT series and STM32L4 series (continued)  |                                                         |                 |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|-----------------|
| СОМР                                                                              | STM32L1 series STM32L4 series                           |                 |
| Supply requirement                                                                | 1.65 V to 3.6 V                                         | 1.62 V to 3.6 V |
| Input range                                                                       | $V_{\text{REF}-} \le V_{\text{IN}} \le V_{\text{REF}+}$ |                 |
| Color key:                                                                        |                                                         |                 |
| = New feature or new architecture (difference between STM32L1 and STM32L4 series) |                                                         |                 |
| = Same feature, but specification change or enhancement                           |                                                         |                 |
| = Feature not available (NA)                                                      |                                                         |                 |

 Table 27. COMP differences between STM32L1 series and STM32L4 series (continued)

#### 4.22 **OPAMP**

The STM32L4 series implement some enhanced OPAMPs compared to STM32L1 series. The table below shows the differences.

| OPAMP                                                                             | STM32L1 series                              | STM32L4 series                                                                                                 |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Instances                                                                         | x3                                          | x2                                                                                                             |  |  |
|                                                                                   | Rail-to-rail input and output voltage range |                                                                                                                |  |  |
|                                                                                   | Low input bias current                      |                                                                                                                |  |  |
|                                                                                   | Low input offset voltage                    |                                                                                                                |  |  |
| Features                                                                          | Low power mode                              |                                                                                                                |  |  |
|                                                                                   | Fast wakeup time                            |                                                                                                                |  |  |
|                                                                                   | Gain bandwidth of 1 MHz                     |                                                                                                                |  |  |
|                                                                                   | NA                                          | Programmable gain amplifier (PGA)                                                                              |  |  |
| Configuration                                                                     | -                                           | The configuration registers are not organized in the same way in the STM32L4 series and in the STM32L1 series. |  |  |
| Color key:                                                                        |                                             |                                                                                                                |  |  |
| = New feature or new architecture (difference between STM32L1 and STM32L4 series) |                                             |                                                                                                                |  |  |
| = Same feature, but specification change or enhancement                           |                                             |                                                                                                                |  |  |
| = Feature not available (NA)                                                      |                                             |                                                                                                                |  |  |

| Table 28. OPAMP differences b  | hetween STM32I 1 | 1 series and STM32I 4 series |  |
|--------------------------------|------------------|------------------------------|--|
| Table 20. OFAMIF uniterences a |                  | 1 Series and Siniszly Series |  |

= Difference between STM32L1 and STM32L4 series highlight



# 5 Revision history

| Date        | Revision | Changes                                                                                       |
|-------------|----------|-----------------------------------------------------------------------------------------------|
| 16-Jul-2015 | 1        | Initial release.                                                                              |
| 23-Nov-2015 | 2        | Section 4.2: Memory mapping updated: Stop 0 mode added for content preservation               |
|             |          | Table 13: PWR differences between STM32L1 seriesand STM32L4 series updated: Stop 0 mode added |

#### Table 29. Document revision history



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved



DocID027094 Rev 2